
International Journal of Particle Therapy 13 (2024) 100626

Contents lists available at ScienceDirect

International Journal of Particle Therapy

journal homepage: www.sciencedirect.com/journal/ijpt

Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology 
Subcommittee Report
Reem Ahmad (PhD)1, Amelia Barcellini (MD)2,3, Kilian Baumann (PhD)4,5, Malte Benje (MSc)6,  
Tamara Bender (PhD)6, Paloma Bragado (PhD)7, Alexandra Charalampopoulou (MSc)8,9,  
Reema Chowdhury (MSc)6, Anthony J. Davis (PhD)10, Daniel K. Ebner (MD, MPH)11,  
John Eley (PhD)12, Jake A. Kloeber (MD, PhD)11, Robert W. Mutter (PhD)11,  
Thomas Friedrich (PhD)6, Alvaro Gutierrez-Uzquiza (PhD)7, Alexander Helm (PhD)6,  
Marta Ibáñez-Moragues (MSc)13, Lorea Iturri (PhD)14, Jeannette Jansen (PhD)6,  
Miguel Ángel Morcillo (PhD)13, Daniel Puerta (MSc)15,16,  
Anggraeini Puspitasari Kokko (PhD)17,18, Daniel Sánchez-Parcerisa (PhD)19,  
Emanuele Scifoni (PhD)20, Takashi Shimokawa (PhD)21, Olga Sokol (PhD)6,  
Michael D. Story (PhD)22, Juliette Thariat (MD, PhD)23, Walter Tinganelli (PhD)6,⁎,  
Francesco Tommasino (PhD)20,24, Charlot Vandevoorde (PhD)6, Cläre von Neubeck (PhD)25

1 Department of Medical Physics and Biomedical Engineering, University College London, London, UK 
2 Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy 
3 Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy 
4 Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany 
5 Marburg Ion-Beam Therapy Center, Marburg, Germany 
6 Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany 
7 Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain 
8 University School for Advanced Studies (IUSS), Pavia, Italy 
9 Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy 
10 University of Texas Southwestern Medical Center, Dallas, Texas, USA 
11 Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA 
12 Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA 
13 Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, 
Spain 
14 Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France 
15 Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain 
16 Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain 
17 HollandPTC, Delft, the Netherlands 
18 Gunma University Heavy Ion Medical Center, Maebashi, Japan 
19 Grupo de Física Nuclear, IPARCOS & IdISSC, Universidad Complutense de Madrid, Madrid, Spain 
20 TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy 
21 National Institutes for Quantum Science and Technology (QST), Chiba, Japan 
22 Mayo Clinic, Jacksonville, Florida, USA 
23 Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France 
24 Department of Physics, University of Trento, Trento, Italy 
25 Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany 
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A B S T R A C T

Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells 
while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. 
Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat 
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Radiobiology radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's 
clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this 
regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and ra-
diation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of 
PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy 
approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look 
at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques 
transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation 
therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving 
the understanding and application of PT in oncology.

Introduction

Particle therapy (PT) has emerged as a revolutionary tool in cancer 
treatment, offering precision in targeting tumor cells while minimizing 
damage to surrounding healthy tissues. Originating from the concept of 
Robert R. Wilson at Lawrence Berkeley National Laboratory, the pri-
mary objective has always been to harness the unique properties of ions 
to optimize radiation dose delivery.1,2 Charged particles exhibit a 
characteristic dose distribution (Bragg peak) depositing most of their 
energy at the end of their track. This energy deposition can be directed 
to the tumor site, minimizing damage to critical organs beyond it.2,3

Apart from the favorable dose distribution, the relative biological ef-
fectiveness (RBE) of PT is larger than that of x-rays due to greater io-
nization density.3-6 Collectively, this allows for the destruction of par-
ticularly radioresistant diseases, including hypoxic tumors. Studies 
suggest that concentrating high linear energy transfer (LET) particles 
into a hypoxic volume within a tumor or into a region containing tumor 
stem cells should lead to greater biological efficiency of PT and im-
provements in the therapeutic ratio.7,8

Over many years, essential physical and radiobiological studies to 
enable patients to be treated with PT have been performed. Nowadays, 
in physics, current efforts focus on refining PT, emphasizing precision, 
efficiency, and cost-efficacy. Strategies include developing novel de-
tectors, targeting moving tumors, adapting treatments to daily patient 
variations, reducing accelerator size, and exploring innovative ap-
proaches like gantry-less treatments, spatial irradiations (grid or mini-
beams), or UHDRs. For radiobiology, recent research underscores the 
point that this discipline can leverage the latest advancements in bio-
technology to herald a new era of drug discovery and radiation 
therapy (RT) optimization in PT. Biological studies in PT must evolve 
from basic radiobiology to a deeper investigation of the mechanisms 
underlying its efficacy, aiming to expand the therapeutic window with 

new approaches in dose delivery regimens and evidence-based com-
bined therapy approaches. This emerging advancement within radio-
biology is poised to synergize with novel discoveries in oncology, such 
as immune system activation, radiosensitization/radioprotection, 
radiomics, biomarker discovery, genomically adjusted RT, and other 
innovative strategies.

A comprehensive exploration of the biological fundamentals of 
PT seeks to enhance comprehension and position PT as a frontrunner 
in oncology. This review delineates the areas of intense research in 
modern PT radiobiology, summarized in the Table, highlighting 
both advancements and knowledge gaps, covering methodologies, 
modeling, and clinical contexts to catalyze further exploration and 
discovery.

Radiobiology of new irradiation modalities

FLASH

Ultrahigh dose rate (UHDR, “FLASH”) RT is a breakthrough in 
cancer treatment with the potential to widen the therapeutic window.9

In preclinical models, the application of UHDRs (>40 Gy/s) of radia-
tion has, in some cases, demonstrated a substantial reduction in normal 
tissue toxicity while maintaining tumor control. Recent advances in 
experimental capabilities have enabled FLASH studies with radiation 
types spanning from x-rays,10 electrons,11 clinical12 and low-energy 
protons,13 helium,14 and carbon ions.15-18 The use of charged particles 
might enable the attainment of high dose rates more readily in clinical 
settings as compared to photons, and ongoing clinical trials are in-
vestigating the effectiveness of FLASH with protons and electrons.19,20

While electrons offer a larger flexibility in terms of achievable dose 
rates, protons and heavier ions are seen as the more direct way to-
ward clinical translation for deep-seated tumors.

Table 
Topics of current investigation in particle radiobiology. 

Aspect Concept

Beam delivery
Ultrahigh dose rates Short exposure times (∼ps-ms) result in higher normal tissue tolerance
Spatial fractionation Higher doses can be better tolerated by normal tissues when delivered in a spatially fractionated manner (µm-mm exposure lengths)
Hypofractionation Exploit good dose conformity to deliver ablative or immunogenic doses
New ions High-LET ions (O, Ne) to target radioresistant (eg, hypoxic) volumes.
NTCP modeling and analysis Understand the impact of dose distribution on normal tissue reactions (volume effects) for different endpoints, including second 

cancer induction
RBE in clinical endpoints Optimize exploitation of RBE by modeling and translation between dose systems

Combined approaches
Radioimmunotherapy Radiation doses stimulate immune response, which can be converted into a strong antitumoral response by immune checkpoint 

inhibitors, eventually exhibiting abscopal response
Radiosensitizers Enhance the DNA damage inflicted to DNA on the subcellular level, for example, by Auger electron emission of metallic 

nanoparticles, target specific DNA repair pathways to enhance tumor response without eliciting a normal tissue penalty
BNCT Neutron irradiation of boron substances selectively targeted to tumor cells releases local alpha decay
Radiopharmaceuticals Targeting residual tumor and metastases following the initial RT treatment of primary tumor

Accounting for individual radiation sensitivity
Biomarkers and liquid biopsies Monitor radiation action, for example, by considering DNA damage response markers; identify mutations in key genes that suggest 

conditional vulnerabilities to PT as opposed to conventional x-ray therapy
GARD Consider an established genomic pattern to assess individual radiosensitivity

Abbreviations: BNCT, boron neutron capture therapy; GARD, genomic-adjusted radiation dose; LET, linear energy transfer; NTCP, Normal Tissue 
Complication Probability; PT, particle therapy; RBE, relative biological effectiveness; and RT, radiation therapy.
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FLASH experiments with heavier ions can now be performed inside 
the spread-out Bragg peak via the application of 3D range modulators, 
leading to studies assessing the maintenance of FLASH effects with high 
LET particles. Although the biophysical models attempting to explain 
the FLASH effect were predicting a loss of the sparing effect at high LET, 
recent experiments demonstrated persistent normal tissue-sparing ef-
fects in both in vitro and in vivo models.14,17,18 In addition, a study with  
12C FLASH irradiations revealed a unique feature, notably the apparent 
suppression of distant metastases.18 These recent experiments with 
UHDR 12C beams have laid the groundwork for preclinical tests with  
16O, or even 20Ne ions.

As the interest in FLASH radiobiology surged, it became clear that 
the existing understanding of tissue responses to radiation fails to ex-
plain the benefits of FLASH. Furthermore, although there is substantial 
evidence supporting the normal tissue-sparing effects of UHDR treat-
ments, some irradiations with electrons and protons have demonstrated 
no such benefit.21,22 The traditional understanding of dose rate effects, 
primarily based on chronic low-dose-rate exposures, was challenged by 
FLASH-RT's unique outcomes,23 suggesting a departure from reliance 
on DNA double-strand break (DSB) repair kinetics. Hypotheses such as 
increased free radical recombination/diffusion24 and oxygen depletion 
initially gained traction25 but were later countered by evidence 
showing insufficient oxygen reduction to confer biological benefits.26,27

Alternative hypotheses, including protection of stem cell niches,28 dose- 
rate dependent changes in lipid peroxidation29 or other dose-rate-re-
sponsive molecules,30 and the impact on blood volume irradiation,31

which may be due to sparing some immune cells, have emerged but 
lack conclusive experimental validation.

Although the underlying mechanisms that drive the FLASH effect 
have not been fully explained, we believe the prospects of this novel 
technique as a common RT modality will be moved forward as the 
biology is elucidated and clinical trials are completed. To advance the 
understanding of the FLASH effect, additional experimental data 
are needed, both in vitro and in vivo, including data examining dose rate 
and other treatment parameters relevant to each radiation modality.

Spatially fractionated radiation therapy

In spatially fractionated radiation therapy (SFRT), a heterogeneous 
pattern of radiation is delivered to tissues by creating regions with high 
(peaks) and low (valleys) doses, resulting in reduced normal tissue 
toxicities.32 The beam size is inversely correlated with the maximal 
doses tolerated by normal tissues.33,34 In this context, minibeam ra-
diation therapy (MBRT) utilizes planar beamlets with widths ranging 
from 0.3 to 1 mm. Compared to clinical SFRT techniques like grid and 
lattice RT (hot spots of 1-2 cm2), MBRT allows for smaller beam sizes 
that allow for increased doses to be delivered to a tumor.

The superior tissue-sparing capacities of proton minibeam radiation 
therapy (pMBRT) were demonstrated in preclinical studies with peak 
doses as high as 100 Gy, with no significant neurotoxicity in cranial 
irradiation on evaluation of memory impairment and histopathology,35- 

37 skin toxicity,38,39 and, in thoracic irradiation, lung fibrosis.40 X-ray 
MBRT has shown a higher therapeutic index compared to that seen 
when an equivalent homogeneous dose is used against a rat glio-
blastoma model41-43 and de novo brain tumors in canine patients.44 The 
biological mechanisms underlying SFRT are under study. Activation of 
bystander cell-to-cell communication45 and an antitumor immune re-
sponse seem key for tumor eradication with MBRT.46

Recently, pMBRT was proposed as a method to enable the delivery 
of MBRT to deep-seated tumors.47 Importantly, pMBRT has shown a 
similar tumor control capacity in high-grade glioblastoma orthotopic 
models in rats to highly toxic curative broad-beam doses.37,48,49 In-
tegrating pMBRT with temporal fractionation in a crossed-beam ap-
proach appears to be the most effective approach to date.50

These promising in vivo results have led to the exploration of heavy- 
ion MBRT, including C, Ne, and Ar. While the latter ions are particularly 

efficient in treating hypoxic tumors, they also induce normal tissue 
toxicities,51 which may be mitigated by MBRT. Additionally, their 
physical scattering properties are ideal for maintaining the minibeam 
spatial dose pattern at greater depths in tissues than possible with 
protons.52 Neon MBRT has shown substantially lower skin tissue toxi-
cities53 than Ne-broad beam RT, with significant tumor growth delay in 
a mouse sarcoma model despite 75% of the tumor receiving < 2 Gy 
(forthcoming data). A similar sparing of skin toxicity was also shown 
using Li-7 ions.54 MBRT with high-LET charged particles offers sig-
nificant promise for improving the therapeutic index in PT, especially 
for tumors near organs at risk. More preclinical data are necessary to 
unravel the mechanism underlying MBRT and to explore potential sy-
nergies with PT, including the hypothesis of enhanced immune acti-
vation. Clinical translation of MBRT in the modern era is in its early 
stages; the authors are aware of efforts in photon and proton modalities, 
although currently there are no published results.

Boron neutron capture therapy

The principle of boron neutron capture therapy (BNCT) lies in the 
capture reaction of a thermal neutron by the boron 10B isotope, re-
sulting in the production of a high-LET alpha particle (4He) and a re-
coiling lithium (7Li) nucleus. Due to the small tissue range of alpha 
particles (5-9 µm), the damage is primarily restricted to cancer cells 
where 10B atoms are preferentially delivered.55,56 Clinical interest in 
BNCT spans a number of malignancies as high-grade gliomas,57,58

cerebral metastases,59 primary cutaneous melanomas,60 and recently 
expanding also to liver and head and neck cancers.61,62

Due to its complex radiation composition, BNCT's biological effects 
cannot be solely explained by absorbed dose. A better understanding of 
BNCT biological effects necessitates research using biological models 
and clinical trials integrating responses with known radiobiology. The 
conventional procedure for computing photon-equivalent doses in 
BNCT consists of adding the contributions of the individual radiation 
types to the total absorbed dose, each one weighed by a fixed factor, 
independent of dose and dose-rate.63 The currently used "weights" are 
RBE and compound biological effectiveness, obtained from reference 
cell survival experiments with γ-rays or x-rays. Patient treatment 
planning, despite the selected model, depends on reliable radio-
biological data. It is thus crucial to report not only the photon- 
equivalent but also the total absorbed doses, including its components 
for the neutron dose used, the neutron source's spectrum, as well as the 
values of boron concentration in blood and tissues.

Boron neutron capture therapy efficacy strongly depends on the 
selective delivery and accumulation of 10B in tumors, achieved through 
boron carriers characterized by high tumor uptake and rapid clearance 
from blood and healthy tissues.61,64 There are currently 3 constantly 
refined generations of boron compounds. The first generation includes 
boric acid and its derivatives; the second consists of bor-
onophenylalanine and sodium mercaptan decahydro-closo-dodecabo-
rate; and in the last decade, boron carrier development has taken 
principally 2 directions: small boron molecules and boron-conjugated 
biological complexes that represent the third generation.62

Studies pertaining to the use of fast neutron RT have contributed to 
a better understanding of the improved biological efficiency of particles 
in comparison to x-rays.64 With the emergence of accelerator-based 
BNCT, which will facilitate clinical trials in the traditional hospital 
setting, and improved drug delivery approaches under investigation, 
BNCT is primed to emerge as an important area of preclinical and 
clinical PT research in the years ahead.

Radiopharmaceutical therapy

Radiopharmaceutical therapy (RPT) uses radionuclides emitting α- 
particle or β-particle, Auger electrons, and γ-rays,65 in combination 
with targeting vectors (including peptides, antibodies or their 
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fragments, scaffolds, and small molecules) against a range of tissue- 
specific tumor biomarkers that maximize the localization of these 
radionuclides at the site of disease, while sparing normal tissues.66,67

There are several critical differences between RPT and external 
beam PT.68 Radiopharmaceutical therapy dosimetry is less well-de-
fined69 due to a heterogeneous dose distribution in tissues and organs. 
While in RT absorbed doses may be directly measured or calculated 
with knowledge of the particle field and patient anatomy, in RPT both 
radiation transport calculations and the pharmacokinetics of the ad-
ministered radiopharmaceutical are required.65 The Medical Internal 
Radiation Dose Committee formalism for estimating absorbed doses in 
nuclear medicine imaging66 has been adapted for alpha-particle emit-
ters in RPT.67 Standardization, advancements in imaging techniques, 
and rigorous dosimetry, along with clinical reporting, are crucial for 
assessing the RBE for different tissues and agents used in RPT and for 
facilitating its use alone or in combination with other modalities.68

Second, RPT typical dose rates (< 0.5 Gy/h) are nearly 2 orders of 
magnitude lower than conventional PT, influencing the biological re-
sponse to radiation and the potential for bystander effects.70

Moreover, the radiation penetration depth differs between radio-
pharmaceuticals and PT. Both α-particles and Auger electrons have a 
high LET and consequently deposit their energy over micrometer (28- 
100 µm) and nanometer (< 500 nm) ranges, respectively, compared to 
the millimeter (0.5-10 mm) range associated with β-particles.71,72 This 
impacts the microscale distribution of radiation dose within the target 
volume and surrounding tissues. Lastly, RPT involves continuous ra-
diation exposure with an exponential decay over hours to days/weeks, 
whereas therapy with particles is typically delivered over a shorter 
period, which may result in distinct radiobiological effects.

Several studies have investigated the combination of external RT 
with RPT.73-75 This approach aims to deliver precise high doses to the 
primary tumor using external RT while also targeting residual tumor 
and micrometastases with systemic RPT. By combining these mod-
alities, the protection of normal tissues surrounding tumors during 
external RT and dose-limiting organs such as kidneys and bone marrow 
during RPT can be better achieved. Novel therapeutic modalities like 
carbon ion RT (CIRT) are being explored in combination with RPT in 
tumor cells.76 Carbon ion RT has been shown to uniquely activate im-
mune responses, DNA damage pathways, and cell-cycle control me-
chanisms, enhancing the effects of RPT agents.75

Despite early forays, the translation of combination of RPT and 
external R into clinical practice has not gained significant momentum. 
This may be attributed to the complexity of dose estimations, as well as 
legal and administrative challenges in certain countries, particularly in 
the context of radiation treatment. However, with recent advancements 
in RPT and improved dosimetry protocols, further exploration of 
combining RPT with external RT is warranted, offering the potential for 
improved treatment outcomes and enhanced patient care.

Particle stereotactic irradiation

Stereotactic body radiation therapy (SBRT), also known as stereo-
tactic ablative radiation therapy or radiosurgery when delivered in a 
single fraction, endeavors to deliver a wholly tumoricidal, ablative dose 
to a tumor target. The radiobiology associated with doses per fraction of 
> 8 to 10 Gy differs significantly from conventional fractionation, with 
tumoricidal and normal tissue effects unexplained by the linear-quad-
ratic model.77,78 With conventional RT, it is generally accepted that 
most of the effects arise from unrepaired radiation-induced DNA da-
mage, which results in mitotic death. In contrast, SBRT effects appear to 
be mediated by multifactorial indirect cell killing.79 First, vascular ef-
fects may drive excess tumor cell death as data have shown a differ-
ential effect on dysfunctional tumor vessels with endothelial apoptosis 
becoming significant above a ∼8 to 10 Gy single dose threshold (mi-
crovascular disruption resulting in death of the tissue supplied by that 
vasculature).80,81 Second, large fractional doses with hypofractionation 

to some degree overcome hypoxia and radioresistance.81 Third, high 
fractional doses of radiation also seem to play a role in stimulating an 
immune response by releasing tumor antigens and inducing specific 
tumor responses.82 Finally, radiation-induced stem cell depletion is also 
likely important as stem cells can migrate into the radioablated tissue 
from neighboring undamaged tissue.83

Hypofractionation with Charged Particle Therapy (CPT) is pro-
mising.84 Based upon the seminal findings of Ando et al,85 who de-
scribed a distinct advantage in treating a rat tumor with limited fraction 
numbers and high dose per fraction in the high LET region of a carbon 
ion beam compared to the limited adverse normal tissue response of the 
skin over the tumor site led to a number of clinical trials in different 
tumor types. For a review of those results, see.84,86 An evaluating panel 
of Quantum Science and Technology clinical trials suggested that hy-
pofractionation be accelerated because of the favorable outcomes in 
radioresistant tumors as well as providing greater access to the tech-
nology.86

Of concern, though, is the penumbra effects of smaller particles, 
such as proton RT, which may result in reduced low-dose delivery to 
surrounding healthy tissue but less sharp ablative dose fall-off outside 
the target tumor. Whether additional radiobiological mechanisms are 
involved is an area of investigation, particularly regarding LET de-
position within the tumor target. Conventional conformal SBRT tech-
niques may result in an LET distribution disproportionately deposited in 
tissues distal to the tumor along the beam path if LET-painting methods 
are not adequately applied.8 Limitations to wider implementation of 
particle stereotactic irradiation87 include uncertainties about dose 
computation, measurement, and radiobiological effects. Experience 
with protons is paradoxical: Once a classical/historical indication for 
pituitary tumors and vascular disorders (arteriovenuos malfromation) 
in the 1950s, the dosimetric limitations of small beams have slowed the 
implementation of modern particle SBRT for field sizes below 3 cm in 
the smallest axis. Detector design and algorithmic dose computational 
tools are currently an area of active investigation with promising proton 
stereotactic irradiation data.

New ions

While most radiobiological studies in PT focus on proton or CIRT 
treatments, ongoing research aims to explore alternative radiation 
modalities, building on efforts initiated in the 1970s during trials at 
Lawrence Berkeley National Laboratory and followed by decades of 
advancements in both physics and biology. To this end, ions heavier 
than carbon, particularly 16O,88 have been considered appealing for 
targeting radioresistant and hypoxic tumors. Their increased oxygen 
enhancement ratio, associated with increased LET values in the target, 
makes them less sensitive to the presence of hypoxic regions within the 
tumor. However, the use of these ions remains hampered by the in-
creased risk of normal tissue toxicities associated with their high RBE.

Combinations with lighter ion beams, such as protons or 4He, where 
different ions, based on their physical and biological properties, are 
directed to certain parts of the tumors, may mitigate these risks.89

However, the efficacy of such approaches remains uncertain due to a 
lack of clinical and preclinical data, partly attributable to the absence of 
animal models suitable for testing field redistributions. Additionally, 
high-LET particle oxygen enhancement ratio (OER) models heavily rely 
on in vitro data, introducing uncertainties to in vivo effect estimation. 
Further experimental efforts expanding to preclinical models are thus 
crucial to refine OER modeling and understand the biological, che-
mical, and physical aspects of hypoxia radioresistance.

Heavy-ion facilities are cost-prohibitive in comparison with con-
ventional or proton therapy, hampering their clinical adoption. Light 
ions, such as 4He or 7Li, may represent a good compromise between 
proton and CIRT in terms of cost-effectiveness. Furthermore, while 4He 
beams have already been recently integrated into clinical practice,90,91

Monte Carlo models suggest that their radioactive isotopes can offer 
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higher Bragg peak doses without an increase of the dose in the plateau 
region,92 though the clinical translation of helium monotherapy has not 
been verified to date. Although their production at sufficient intensities 
remains challenging in clinical settings, modern high-intensity accel-
erator facilities already offer the possibility of first pilot studies.

Multimodal radiation therapy

Numerous novelties within systemic therapy and photon RT may 
provide robust translation opportunities for combinatorial effect with 
PT, above and beyond what is possible with conventional RT.

Charged particle therapy in combination with immunotherapies

Immunotherapies, mainly immune checkpoint inhibitors (ICI), are 
currently a component of standard of care in several cancer types and 
are often included in cancer therapy regimens in combination with 
other systemic and local therapies, including RT. The combination of 
immune and RT has shown promising results in patients who did not 
respond to other therapies.93,94 The mechanistic basis for such a com-
bination is RT immunogenicity, that is, the creation of de novo antigens 
(referred to as antigenicity) and the release of factors attracting and 
activating immune cells (ie, adjuvanticity).95 The induced im-
munogenicity is then boosted with (neo)adjuvant immunotherapies, 
mostly ICI.

However, only a fraction of patients responds to such combinations, 
and recent studies combining photon RT with ICI have failed to meet 
their primary endpoints.96 The design of these studies has been criti-
cized, showing the importance of clinical trial design for combined 
treatment with immunotherapies, and leaving significant room for 
improvement. From a biological perspective, the lack of signal from 
these trials could be influenced by the decision to irradiate lymph 
nodes. While they are intentionally irradiated during therapy to era-
dicate putative metastases, recent experimental data have shown that 
sparing lymph nodes is pivotal for an efficient immune response fol-
lowing RT.97 From this perspective, PT may provide beneficial prop-
erties for combining radiation with immunotherapy due to the physical 
and biological features of particles.98,99 The high precision of beam 
delivery allows for improved sparing of circulating lymphocytes (and 
other lymphoid organs-at-risk like bone marrow, thymus, or spleen), 
and hence immune cells are available for an immune response. This is 
supported by evidence showing a lower degree of lymphopenia fol-
lowing PT.99 The level of immunogenicity of the cellular response to RT 
is crucial and mainly depends on 2 factors, that is, antigenicity 
(neoantigen repertoire triggered by radiation exposure) and ad-
juvanticity (release of immunogenic danger signals during cell death or 
stress response).100 In this light, charged particles, especially CIRT, are 
discussed to be of advantage due to an increased RBE, different cell 
death patterns, and clustered and more complex DNA damage. Ulti-
mately, the question is whether immune “cold” tumors can better be 
turned into “hot” tumors by PT as compared to conventional RT.101,102

While generally the mechanisms of RT on immunogenicity are not well 
understood (eg, with respect to dose or fractionation schemes), this is 
particularly true for PT. Other open questions are related to the se-
quence of administration of immunotherapies relative to RT.103

Two interesting new approaches in RT regimens propose to boot-
strap immune-related features of tumors via the host or the treatment, 
by changing patient fractionation schemes either temporally or spa-
tially. In preclinical animal models, the personalized ultrafractionated 
stereotactic adaptive radiation therapy (PULSAR) regimen separated 
fractions by several days, thereby allowing time for adaptation within 
tumor tissue as well as with respect to the immune response.104 In 
human patients, this gap between fractions can be weeks. This follows 
the hypothesis that repeated longitudinal exposure to tumor antigens 
may amplify the adaptive immune response and thereby improve im-
mune control of metastatic cancer disease.105 Personalized 

ultrafractionated stereotactic adaptive radiation therapy has not been 
used with PT yet, but the ultrafractionation and a hypothesized im-
proved immune response render PT attractive for implementation in 
PULSAR.

One spatial fractionation approach is called stereotactic body RT- 
based partial tumor irradiation targeting hypoxic segments of bulky 
tumors (SBRT-PATHY), demonstrating promising initial outcomes. The 
authors are investigating apparently improved exploitation of by-
stander and abscopal effects, aiming to specifically target the hypoxic 
and immunosuppressive parts in the tumor microenvironment while 
sparing the peritumoral immunological microenvironment, including 
nearby tissues, blood-lymphatic vessels, and lymph nodes.106,107 This is 
hypothesized to enhance immune response. Based upon these pro-
mising results, carbon-PATHY takes advantage of the proposed me-
chanisms above along with the advantages of carbon ions, including a 
reduced OER. Indeed, the approach is being tested with CIRT in clinics 
with promising results.108,109

In summary, the combination of charged particles and im-
munotherapy may be powerful but many questions remain to be an-
swered. It is pivotal that particle radiobiologists work closely together 
with immunologists to shed light on the immune-related mechanisms of 
PT. Initial forays into clinical translation have begun, but poor access to 
PT centers limits robust study of these observed effects.

Radiosensitizers

Radiosensitizers are compounds that augment the potency of io-
nizing radiation in eradicating tumor cells, typically measured by their 
enhancement ratio.110-112 The interest in applying radiosensitizers in 
combination with particles is growing due to the hypothetical ability to 
reduce total patient dose while increasing tumor control probability.113

Considering the basic biological mechanisms of action, radiosensitizers 
can be classified into 5 categories: (1) suppression of intracellular thiols 
or other endogenous radioprotective substances, (2) formation of cy-
totoxic substances by radiolysis of the radiosensitizer, (3) inhibitors of 
DNA repair, (4) thymine analogs that can incorporate into DNA, and (5) 
oxygen mimetics that have electrophilic activity.114,115 Regarding their 
different structures, radiosensitizers can be classified as small mole-
cules, macromolecules, or nanomaterials.116,117 Some small molecules 
that are currently being investigated include peptides, miRNAs, siRNAs, 
and oligonucleotides.114,117 One strategy for radiosensitizers has been 
to repurpose drugs with approved noncancer indications and review 
their efficacy in combination with radiation or chemoradiation through 
clinical trials, allowing rapid trial evaluation without the need for early- 
phase, regulatory-approval studies.118 Other radiosensitizers, such as 
naturally occurring products (phytocompounds), are also undergoing 
clinical trials.119 Examples include curcumin, resveratrol, dihy-
droartemisinin, and paclitaxel.114,117

Furthermore, the use of nanoparticles (NPs) has drawn attention in 
recent years.120-122 Technological advances in NP synthesis/functiona-
lization have led to significant advances in molecular detection, ima-
ging, targeting, multifunctional therapeutics, and prevention and con-
trol of diseases.121 In particular, the application of metallic NP has 
received growing attention as a radiosensitizer in PT.113,114,120 Some 
NPs with proven radiosensitizing effects are made of noble metals (eg, 
gold, silver, and platinum) or heavy metals (eg, gadolinium, hafnium, 
tantalum, tungsten, and bismuth).114,122 The radiosensitization poten-
tial depends on numerous factors: cell line, NP type and size, con-
centration, coating, intracellular localization, and energy and nature of 
radiation.122 Different methodologies have been proposed to study the 
radiobiological effect of these materials.123 Noble metal nanomaterials 
have been extensively studied using x-rays.113,114,124 However, the 
mechanistic explanation for the local dose enhancement provided for 
photons is different from that for ions, where the dose is already highly 
localized along the tracks, and an extremely high local dose is required 
to increase the damage further, without even accounting for overkill 
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effects. In this case, the enhancement of the radiation effects is not yet 
fully understood.113 Similar mechanisms have been reported, such as an 
increase in secondary electrons together with the increase in reactive 
oxygen species formation, oxidative stress, inhibition of DNA repair, 
changes in the cell cycle and organelle function that increase cyto-
toxicity, inhibition of the expression of radiation resistance genes, or 
the promotion of expression of radiation-sensitive genes.114,124 Con-
sidering that NPs induce oxidative stress and inflammation, an eva-
luation of ion release and subsequent biological responses, oxidative 
stress, and inflammation is important for nanotoxicity.125 Also, the 
selective delivery of NPs could be passive or via delivery systems with 
tumor-specific agents.113,126 Moreover, antisense oligonucleotide ge-
netically loaded NPs can also be designed for use via gene radio-
sensitization.126

Despite the advantages of nanomaterials, few have been translated 
into clinical trials.127,128 To confirm the uptake in correct locations, NPs 
that have translated to clinical trials have tended to be “theranostic“ 
agents, that is, visible on diagnostic images prior to irradiation.129-133

Although there has been great interest in the use of noble metal NPs, 
investigation is still needed to control and optimize their effect before 
translation into clinical trials. Furthermore, other NPs were found to 
have radioprotector effects instead,134-137 which is a potentially alter-
native approach. In addition, while the oxygenation of the tissues may 
play a significant role, the OER effect associated with the presence of 
NP has not been considered.113 Despite that, some compounds that 
mimic oxygen capabilities are being investigated.114 Moreover, hy-
poxia-specific cytotoxins could be used for overcoming the radio-
resistance of hypoxia tumors.114

Prediction and prognosis in radiation oncology

In medicine, prediction can be directed at 3 aspects of an in-
dividual’s health status. One can predict the risk for a given cancer, one 
can predict the response to a given therapy and one can predict the risk 
for disease recurrence. Prognosis, on the other hand, speaks only to the 
overall outcome regardless of therapy or perhaps to standard therapy 
and does not rely on the data one might use for prediction. Prediction 
relies on biomarkers, a term often used casually and which is defined by 
the FDA as a validated characteristic that is objectively measured as 
indicators of health, disease, or a response to an exposure or inter-
vention, including therapeutic interventions.

Precision medicine in radiation oncology can be broadly divided 
into efforts by the physical sciences, that is, not only the application of 
imaging-based physical mapping and precise localization of target 
tissue but also the heterogeneous and unique features derived from 
image analysis, so-called radiomics. Biological approaches that quantify 
the entire collection of specific categories of biological molecules that 
can translate into the dynamic function of a cell, tissue, or organism are 
called radiogenomics.

Omics can be broadly classified at the whole genome level, where 
single nucleotide polymorphisms (SNPs) are examined, and by copy 
number variation, where chromosome structure is examined to identify 
gene copy number, inversions, deletions, and other genomic re-
arrangements. Just below the genome level is transcriptomics—the 
characterization of all transcribed RNA species whether translated into 
protein or not; proteomics—the characterization of proteins; epigen-
omics—the evaluation of the locations and functions of chemical tags, 
DNA methylation as an example, along the genome; and metabolomics, 
where the metabolites generated by cellular function are characterized. 
In radiation oncology, most effort in omics analysis has focused on 
tumor transcriptomics; however, unlike other disciplines in medicine, 
radiation oncology has also examined the responses of normal tissue 
given that treatment outcomes are not only based upon tumor control 
probability but also the probability of normal tissue complications. 
Furthermore, assay development besides following more traditional 
approaches to omics analysis focused on direct analysis of tumor or 

normal tissues, new less invasive approaches that examine circulating 
factors such as circulating fragmented tumor DNA (ctDNA), circulating 
miRNA, or circulating exosomal cargo (DNA, RNA, and proteins) are 
gaining favor based upon increased computational power for next 
generation sequencing and the limited invasiveness of fluid (blood, 
urine, sputum)-based assays.

Indicators of individual radiosensitivity
Individual radiation sensitivity (iRS) characterizes the specific 

tissue/cellular response to ionizing radiation and has a significant in-
fluence on the variables affecting late RT toxicity. Like other biological 
processes, iRS is represented as a Gaussian curve, with patients with 
very severe tissue responses but with a broadly normal phenotype at the 
left of this curve.138 At the molecular level, damage to DNA and bio-
molecules, DNA repair pathways, cell death, as well as oxidative stress 
strongly impact the RT toxicities and the sensitivity to specific DNA 
damaging systemic therapies. As a possible biomarker for radio-
sensitivity, the relationship between genes, their products, or regulators 
has been largely investigated.139 However, implementing these poten-
tial biomarkers in the RT workflow remains challenging. Several ap-
proaches have been developed to identify biomarkers for patients un-
dergoing RT, including preclinical and clinical studies, agnostic 
approaches like high-throughput proteomics or genome wide CRISPR 
screenings or genomic analysis of resistant cellular models.140-142

Most known biomarkers are related to the Hallmarks of 
Radiobiology: DNA damage repair, tumor cell redistribution in the cell 
cycle, repopulation, reoxygenation, and radiosensitivity. For instance, 
the functional analysis of subnuclear DNA damage response (DDR) foci 
in tumor tissues, peripheral blood lymphocytes,143 or circulating tumor 
cells (CTCs) might predict iRS. These foci are dynamic multiprotein 
complexes centered around a DSB. They appear as "dots" in cells or 
tissues under immunofluorescence and have a structure related to the 
entity of DNA damage, the cell cycle stage, and local chromatin struc-
ture. These sites represent local spreading and intensification of signal 
after DNA damage and function as a "toolbox" to support downstream 
function of the DDR including DNA repair and cell cycle checkpoint 
responses.144,145 The primary advantage of these DDR foci as an iRS 
functional biomarker is their ability to disclose the presence of repair 
deficiencies, including defects from changes in signal transduction 
pathways,146 epigenetic events, or gene mutations.138,147-149 These foci 
offer a comprehensive evaluation of DDR network performance without 
requiring knowledge of every network component—many of which are 
currently unknown.145 It is possible to imagine creating mechanism- 
based "DDR foci signatures" where network nodes are represented by 
the presence of key proteins such as γ-H2AX, 53BP1, BRCA1/2, RAD51, 
FANCD2, or others. Indeed, there is a linear correlation between cell 
survival after irradiation and residual γ-H2AX, making them a surrogate 
of radiosensitivity,150-152 as well as tumor bioptic predictive biomarkers 
of radiosensitization caused by a molecular targeted agent.153,154

Compared to γ-H2AX, 53BP1 seems to be more accurate in identifying 
DSBs making it an alternative biomarker.155,156 Other mentioned pro-
teins are employed as a surrogate of homologous recombination re-
pair and nonhomologous end joining activity and might contribute to 
the additive toxicity in the combination approaches, also after 
CIRT.2,157

It is also noteworthy that cell lines with homologous recombination 
repair mutations have decreased OERs compared to normoxic sce-
narios, with irradiation in hypoxia leading to the creation of more DNA 
interstrand cross-link formation. Effects of HR on DNA-protein cross- 
links are still a possibility, as there is strong evidence of higher yields in 
hypoxic environments. Because of hypoxic dependency and prolifera-
tion, targeting HR to promote radiosensitivity might provide for partial 
tumor selectivity.158 Moreover, hypoxia-induced changes in DNA mis-
match and base excision repair lead to chromosomal instability, pro-
viding the basis for a “mutator” phenotype.158 The variation in hypoxia 
might be traceable in gene expression signatures (ie, HIF-1)159,160 and 
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in the meantime through the analysis of radiomics and radiogenomic 
features,161,162 serving as promising noninvasive/minimal-invasive 
predictive biomarkers of radiosensitivity/resistance.

Fluid-based biomarker development
Single nucleotide polymorphisms in DDR genes identified in per-

ipheral blood cells have been shown to be associated with iRS, with a 
tissue specificity for each genetic determinant and “linkage dis-
equilibrium” for which some SNPs can catch most of a regional genetic 
variation.138 One of the most analyzed is the missense ATM SNP 
rs1801516 that has shown to correlate with high risk of post-RT fi-
brosis, especially in breast and prostate cancers.163,164 Moreover, for 
some SNPs,165,166 only the heterozygous state confers their respective 
radioprotective and sensitizing effects. The combination of poly-
morphisms in different alleles seems to be a feasible approach to assess 
the iRS.167 Although encouraging, the SNPs model was rarely applied to 
the validation cohorts, and it is difficult to obtain significant statistical 
power to assess isolated SNPs. Through the European REQUITE project, 
most advancements have been made in identifying SNPs linked to late 
toxicities in breast and prostate cancer.168 The combination of SNPs 
with the dosimetric parameters (Normal Tissue Complication Prob-
ability (NTCP) and LET distributions), clinical risk factors, and co-
morbidities linked to high intrinsic radiosensitivity (ie, radiosensitive 
syndromes) might be helpful in defining patient-tailored iRS.

Besides following more traditional approaches to omics analysis 
focused on direct analysis of tumor or normal tissues, new less invasive 
approaches that examine circulating factors such as ctDNA, circulating 
miRNA, or circulating exosomal cargo (DNA, RNA, and proteins) are 
gaining favor based upon increased computational power for next 
generation sequencing necessary to analyze ctDNA from circulating free 
DNA and the limited invasiveness of fluid (blood, urine, sputum)-based 
assays.

The assessment of ctDNA found in blood and urine can also take a 
different strategy from the approaches described above in that the 
analysis is designed to detect cancers earlier169,170 and predict ther-
apeutic response but also to detect minimal residual disease (MRD).171- 

173 By tracking specific biomarkers, the overall response to therapy and, 
subsequently, MRD can be followed, and, most importantly, there is the 
potential to identify disease recurrence well before pathophysiologic 
indicators of recurrence. Exosomal cargo (DNA, RNA protein, 
miRNA)174-176 and circulating miRNAs177,178 are also advancing in the 
search for fluid-based biomarkers of radiotherapeutic response and 
MRD.

Circulating tumor cells
Isolating CTCs from patients' blood has been a challenge for re-

searchers, which has led to only a few studies to detect the effects of 
radiation on the CTCs. However, being able to isolate and culture these 
cells in vitro could provide enormous benefits and is worth exploring. 
Monitoring CTCs in cancer patients undergoing RT could provide new 
insights into how metastatic spread is influenced by radiation and vice 
versa. Additionally, CTCs could become a valuable source of bio-
markers, a liquid biopsy, used to study treatment response. A relapse 
during RT has been associated with an increase in the number of CTCs 
and thus, their count could be used as predictive biomarker for clinical 
trials.179

Conventional radiation has been shown to disrupt the primary 
tumor vasculature, potentially increasing the dissemination of CTCs. 
For instance, during early-phase RT an increase in CTC number in 
non–small cell lung cancer (NSCLC) was observed.180 Photon radiation 
can also induce epithelial-mesenchymal transition, which could po-
tentially lead to dormant CTCs awakening, fostering proliferation, re-
sistance, and metastasis. The shedding of mesenchymal marker-ex-
pressing CTCs was observed during NSCLC RT, potentially informing 
new strategies to monitor metastatic spread post treatment.180,181 In a 
study of a large cohort of patients with early-stage breast cancer, it was 

reported that CTC-positive patients that received RT had a longer sur-
vival rate compared with nontreated patients.181 Radiation therapy in 
combination with chemotherapy has been shown to reduce the number 
of head and neck squamous cell carcinoma and prostate CTCs.182-184

The number of CTCs, indeed, is a suitable marker for the response to x- 
rays RT,185,186 but there is a lack of publications that examine in detail 
the influence of RT on CTC genotype. Furthermore, it should be noted 
that almost all previous studies on RT and CTCs were focused on x-rays 
with some exceptions dealing with protons and carbon ions. Exploring 
the quantity and nurturing of CTCs in vitro postparticle irradiation 
could unveil novel markers for probing therapy development. This ex-
ploration may also illuminate diverse mechanisms underlying metas-
tasis formation in both conventional and particle RT.

Besides CTCs or other genomic content in blood, blood chemistry is 
also of increased interest for stratifying patients and predicting treat-
ment response.187 In this scenario, the blood cell count is an easily and 
often available parameter that might reflect the inflammatory re-
sponse188,189 as well as the oxygenation status.190 Recent literature 
showed their prognostic role in several tumors and in different RT 
settings, including high LET.191 Routinely available in this context is 
also the blood glycemic status that, when increased, seems related to 
more aggressive tumor phenotype.192,193

Genomic-adjusted radiation dose
The concept of genomic-adjusted radiation dose (GARD)194 pro-

poses to exploit information on genomic expression obtained from a 
tumor biopsy or a liquid biopsy, like the CTCs extracted from a patients' 
blood, to estimate the radioresistance of the malignancy affecting a 
specific patient. In this framework, it is then theoretically possible to set 
up a personalized dose prescription for each single patient for whom the 
genomic expression test is available. This would comply with the ideal 
need to deliver a treatment that is as far as possible tailored to tumor 
biology, thus aiming at higher effectiveness. An approach of this type 
could be pan-cancer, that is, tumor site-agnostic or tumor site-specific, 
where the genomic panel used to interrogate the tumor is unique to the 
tumor site.

A pan-cancer approach was developed by ultimately combining the 
surviving fraction at 2 Gy for 48 cancer cell lines from the NCI-60 panel 
with a biomarker discovery platform that, starting from an initial set of 
500 genes, identified 10 hub genes whose expression could be used to 
estimate surviving fraction at 2 Gy.195 This Radiosensitivity Index (RSI) 
appeared to be strongly related to radiosensitivity. Subsequently, the 
RSI algorithm was then tested using 3 gene expression data sets of 
patients treated with chemoradiation to predict tumor response and 
prognosis,196 followed by examination of other tumor sites treated 
with, or not, radiation including breast,197 endometrial,198 and pan-
creatic cancers.199

To develop the concept of a genomic-adjusted radiation dose, the 
RSI was combined with the linear-quadratic model for cell survival, 
where the RSI value contributes to the α term, which includes the pa-
tient-specific treatment response. The GARD determined for a given 
patient is calculated as nd(α + βd), with n number of fractions and d 
dose per fraction. The GARD was tested on several cohorts of patients 
previously receiving RT.194,200 It was shown that, when accounting for 
the RSI, the variability in the GARD values determined was much larger 
than that due to the physical dose received. Namely, where a dose 
stratification was performed, there could be patients originally assigned 
to the low-dose group, who due to their intrinsic radiosensitivity might 
be better served in a higher dose group based upon their calculated 
GARD value, and vice versa. This was also corroborated by a later 
study, where GARD was found to be associated significantly with both 
time to first recurrence and overall survival.200

The proposal of GARD elicited positive feedback as well as criticism 
such as the patient populations used for analysis and criteria for de-
fining recurrence, among others. The application of GARD in an era of 
increasing use of stereotactic ablative radiation therapy was also noted 
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which would likely apply to hypofractionated CPT. Furthermore, a re-
cent study based on a reanalysis of the original publication as well as on 
additional data raised skepticism on the possibility to use RSI as a ro-
bust tool to adjust dose prescriptions in RT,201 which was defended 
through correspondence with the original GARD proponents. Ob-
viously, the limited data currently available do not allow drawing final 
conclusions of the clinical potential of the RSI and, therefore, of GARD 
as an effective tool for RT individualization. Importantly, there is at 
least 1 clinical trial (ie, NCT05528133 focused on triple-negative breast 
cancer) currently recruiting patients. The outcomes of this and similar 
studies will shed light on this promising as well as debated topic.

The RSI tool and the GARD approach were developed in the fra-
mework of photon RT using conventional fractionation. It is possible 
that gene expression is differentially modulated by different types of 
radiation such that extending GARD to CPT would require additional 
investigation. At the same time, it could be hypothesized that the RSI is 
associated with smaller interindividual variations in RBE. Nevertheless, 
it could be intriguing to investigate the possibility of combining the 
high spatial selectivity of particle beams with both their higher RBE and 
a genomic-based personalized dose prescription.

Besides GARD other biomarkers within a specific disease site have 
been developed and validated. This includes the radiation sensitivity 
signature for breast cancer.202 This 51 gene signature was independent 
of disease subclassification and outperformed all other clin-
icopathologic predictors of treatment response. The radiation sensi-
tivity signature signature is strongly linked to cell cycle and DNA repair 
pathways. Similarly, the RadR signature, developed in HPV-head and 
neck squamous cell carcinoma was unique for the use of tumor and 
paired normal mucosal samples, cell lines, and genes associated with 
disease-free status after surgery and radiation.203 The resulting 13 gene 
signature was used in an integrated analysis along with genomic al-
terations, protein expression, and drug sensitivity. While the RadR 
score was associated with molecular classification, the median RadR 
score was capable of segregating patients treated by surgery plus 
radiochemotherapy based upon recurrence-free survival, but not those 
treated by surgery and chemotherapy, thus validating the specificity of 
RadR for radiation response. Neither of these signatures has been ap-
plied to PT, although there is potential to determine if these signatures 
are pan-RT, that is, apply to CPT as well as to x-rays.

Confounding the development of radiation response biomarkers via 
omics analysis are dosimetric and volumetric considerations that are 
rarely, if at all, accounted for. Hypofractionated schedules, like those 
often used with 12C or stereotactic or ultrafractionated schedules, may 
negatively impact the accuracy of some algorithms that were developed 
from information gleaned from patient populations treated with con-
ventional 2 Gy/fraction exposures. There may be archived tissues from 
CPT trials with dosimetric and volumetric information along with 
clinical and pathologic information, where putative biomarkers could 
be tested for application in CPT, be it normal tissue or tumor response. 
Not addressed at all is the contention that age (cancer patients are 
generally older) and sex may bias biomarker screening.204

Radiomics
Genomic-adjusted radiation dose and RSI represent a possibility for 

biologically motivated patient stratification; however, they are asso-
ciated with additional time, effort, and costs for the requisite biological 
analyses. Radiomics endeavors to utilize the diagnostic images gathered 
as part of routine clinical practice, such as computer tomography, 
magnetic resonance imaging, positron emission tomography, x-ray, and 
ultrasound, extract objective, quantitative image features from the 
image, and then analyze these features for correlation or prediction of 
clinical features, generally using machine learning.205,206 As early as 
2014, a clustering between certain image features and the tumor stage 
and histology was predicted for NSCLC tumors,206 paving the road for 
radiomics as potential biomarkers for diagnosis, prognosis, and pre-
diction. To establish such a computerized model, 2 data sets are 

required: a training data set and a data set for validation. The more 
heterogeneous the data sets are (different clinics, countries, devices, 
etc), the more robust the model becomes, but consequently, more data 
sets (ie, patient images/data) are needed for model development. Par-
ticle Therapy Cooperative Group may be one such platform for the 
development of such databases of particle-treated patients.

Dosiomics extends radiomics by extracting useful features from 3- 
dimensional RT dose distributions for the prediction of treatment out-
comes207,208 or normal tissue responses.209 Indeed, dosiomics applied 
to skull base chordomas treated with CIRT revealed the association of 
these features with adverse outcomes.210 In addition, the dose-averaged 
LET in CIRT has been found to correlate with local recurrence in 
chondrosarcomas211 and sacral chordomas,212 leading to an increased 
interest in a combined RBE-based and LET-based treatment optimiza-
tion. In this regard, a retrospective analysis213 using dosimetric-iden-
tified features to identify possible quantitative prognostic factors to 
predict local control in sacral chordomas suggested that features ex-
tracted from LETd maps can be employed for patient stratification into 
high-risk or low-risk groups for disease recurrence.

Of particular interest for RT are delta-radiomics, where a long-
itudinal image sequence is analyzed for signature change. Longitudinal 
image sequences are continuously generated in RT through imaging 
diagnostics, during treatment, and as a control in the follow-up. 
Without additional burden for the patient, a prognosis for the treatment 
response could already be made during treatment and, if necessary, the 
treatment could be adjusted. To date, radiomic analyses have not been 
robustly linkable to biomedical processes, and efforts are underway to 
develop quality standards for model reporting, such as Transparent 
Reporting of a multivariable prediction model for Individual Prognosis 
or Diagnosis214 and the Radiomics Quality Score—RQS 2.0.215 Never-
theless, there is great potential for translational biomedical studies that 
attribute changes in image signatures to biological processes.

Recent research approaches have adapted classical imaging for-
mats such as histological staining of tumor tissue by hematoxylin & 
eosin staining, used in routine diagnostics with radiomics.162 These 
histo-radiomics studies are predestined for preclinical trials with or-
thotopic and heterotopic tumor models or replacement methods such 
as the chorioallantoic membrane assay, which also allows xeno-
transplantation of primary and established cell and tissue cultures that 
grow into well-vascularized tumors for tumor microenvironment stu-
dies.216 The tumors can be sampled at different times after irradiation 
and examined classically by histology or with spatial omics such as 
Matrix-Assisted Laser Desorption Ionization imaging217 providing in-
sights into biological processes. Combined radiochemotherapy is the 
standard of care for most tumors, meaning that not only RT alone but 
also combined approaches with established chemotherapies and new 
substances such as targeted drugs should be investigated. Here too, 
preclinical tumor models have an advantage over the clinic in terms of 
sample throughput and substance spectrum. Overall, (histo)-radiomics 
has great long-term potential to stratify patients and to make 
recommendations for dose, fractionation, radiation quality, and 
systemic therapies.

Radiobiology model systems

Biological studies often rely on adherent cell monolayers or 2D cell 
cultures for their convenience and ease of maintenance. Such models 
have advanced the understanding of basic of cellular mechanisms post 
RT, including DNA damage and repair, survival, and cell death.218,219

They also serve as effective tools for drug screening, particularly for 
evaluating radiosensitizing agents.114 Alternatively, ex vivo tissue slice 
cultures or patient-derived explants can be relatively easily prepared in 
replicates to study the effects of radiation in the same sample in an 
organotypic environment with preserved original tissue architecture. 
While long-term (several months) culture of rodent tissue slices has 
been reported, human glioblastoma slices could only be maintained for 
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several days or weeks in some cases220,221 with the quality of patient 
material being the limiting factor.

Other conventional models that have advanced cancer radiobiology 
research include animals and small animal RT research platforms.222,223

Mouse models, for example, allow for mimicking systemic radiation 
effects in order to observe and evaluate the impact of acute and late 
normal tissue effects at the organismal level. Studies in mice have for 
instance shown that radiation does not only affects synaptic function 
and behavior224 but also causes a decrease in dendritic complexity, 
reduction in dendritic spines and synaptic plasticity in the brain, 
leading to cognitive dysfunction.225 Long-term radiation studies in ro-
dents also showed increased vascular perforation leading to radiation 
myelopathy.226,227 Unfortunately, animal findings may not fully 
translate to human clinical settings due to differences in genetics, 
morphology, anatomy, and metabolism,228 all of which are factors in 
the response to therapeutic treatments. In addition, animal studies also 
bring ethical considerations.

Recent advances in stem cell research and 3D cell/tissue technologies 
may circumvent these issues. Unlike spheroids, generated from im-
mortalized cell lines or primary cells, organoids are derived from stem 
cells or primary tissue (ie, patient-derived organoids [PDOs]).229-231 The 
use of PDOs, which truly resemble the original tissue or tumor with its 
specific set of mutations and/or inflammatory characteristics, allows for 
predicting the efficacy of RT and optimizing personalized treatment 
strategies.232 While PDOs represent a patient-specific disease state and 
are generated in a short time, organoids are derived from induced 
pluripotent or embryonic stem cells. This circumvents the problem of 

limited availability of human samples and allows the generation of 
multiple organ-specific cell types and subtypes from the same genetic 
background as well as easier gene editing. Their organ-like properties 
bridge the gap between cell culture studies and clinical approaches. A 
recent study using human brain organoids showed that postradiation 
image changes, that is, contrast-enhancing lesions, can be attributed to 
the formation of aberrant blood-cerebrospinal fluid barrier or choroid 
plexus in response to altered NOTCH and WNT signaling involved in cell 
differentiation.233 Furthermore, human organoids can be maintained in 
long-term culture as organoid slices cultured at the air-liquid inter-
face,234 allowing for studies of long-term radiation effects.

To support the biological application, engineers, together with 
biologists, are developing an organ-on-a-chip, microfluidics-based ap-
proach, which may open up even more possibilities for Tumor 
MicroEnvironment modeling235-237 and other applications within 
radiobiological research.238-240

While these model systems, summarized in the Figure, offer sig-
nificant advantages in terms of controlled experimental conditions and 
the ability to mimic specific aspects of the tumor microenvironment, 
they may not fully replicate the intricate interactions and complexities 
found within living organisms.241 Furthermore, the dose of radiation 
applied can have different outcomes depending on the dynamic struc-
ture and function of the organs. However, despite these limitations, 
continued advancements in technology and methodology hold great 
promise for enhancing our understanding of radiation-induced effects 
and developing novel treatment strategies for conventional x-ray 
therapy as well as CPT.

Figure. Different biological models according to their level of complexity, from cellular to tissue/organ to organism level, with their advantages and disadvantages 
and the possibilities they offer in drug discovery and radiation therapy optimization. Created with BioRender.com.
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Modeling

Mathematical models in radiation biology allow us to challenge 
underpinning mechanistic hypotheses which, once validated, can be 
used as tools to assess radiation effectiveness for treatment planning or 
other endpoints related to CPT. Here, we summarize selected fields of 
current interest in effects modeling for protons and heavier ions.

Relative biological effectiveness modeling for treatment planning

The RBE depends on both physical (LET, energy, dose, and fraction 
number) and biological factors (α/β ratio, ratio of α’s), requiring a 
consistent description of these dependencies for complex radiation 
fields in a therapeutic setting. There are 2 opposing strategies to model 
RBE: (1) mechanistic models predicting RBE values by simulating se-
lected underlying physical, chemical, and biological processes, while 
(2) empirical models fit analytical functions to experimental results and 
extrapolate them to new scenarios. In fact, most models exploit ele-
ments of both strategies.

A feature of ion radiation is that RBE increases with LET depending 
on ion type and α/β ratio before this trend is inverted due to over-
kill.242 Two mechanistic models are used in treatment planning: the 
local effect model (LEM I)243 and the modified microdosimetric kinetic 
model in Japan.244,245 Model variants have been suggested (eg, LEM 
IV,246,247 Mayo Clinic Florida-Microdosimetric Kinetic Model 
(MKM)247). An assessment of the MKM and other models248 inspired 
the creation of GSM2.249 Still other improvements are under discussion. 
Further mechanistic models also exist, for example, in nanodosi-
metry250,251 and machine learning-driven modeling.252-254 The advent 
of new heavy ion centers underlines a need for comparison of treatment 
plans optimized with different RBE models.255,256 Issues in dose re-
porting have been addressed,257 but given the scope of possible future 
model diversification, discussing model-induced uncertainty in carbon 
ion therapy is of high relevance. The advent of new heavy ion centers 
underlines a need for comparison of treatment plans optimized with 
different RBE models.255,256 Issues in dose reporting were addressed,257

but in the scope of possible future model diversification, discussing 
model-induced uncertainty in CIRT is critical.

In proton therapy, an RBE of 1.1 is usually employed. However, 
there is strong evidence from cell experiments and recent clinical in-
dications for an increase in RBE with LET.258 A family of empirical 
models attempts to describe the LQ parameter dependence on LET and 
α/β.259,260 The models differ in the expressions for the fitting para-
meters and the data used to obtain them, reflecting uncertainties in RBE 
determination. Additionally, there have been attempts to apply the LEM 
and MKM to proton therapy.261-263

Several pools of experimental RBE collections are becoming avail-
able, for example, the particle irradiation data ensemble264-266 and 
large single sets of experiments,267,268 reflecting the richness of RBE 
systematics. These data sets are fundamental for tests of the models, 
which should be fitted to specific data and tested independently on 
other portions of the database (eg, different ions or LET regimes). 
Dedicated experiments can also be performed to confirm the model 
predictions, in particular when applying them to multiple situations 
(eg, varying dose rates and different endpoints).

NTCP modeling

The differences in dose deposition patterns between photon and 
proton therapy are exploited in the Netherlands in the “model-based 
approach.”269 Here, NTCP dose-response curves are parameterized for 
specific therapy-related side effects, and the NTCP for each modality is 
compared prospectively. The results allow stratification of patients who 
benefit most from proton therapy in terms of reduced normal tissue 
effects. Similar concepts have been explored elsewhere.270 While a di-
rect NTCP-driven optimization has not been applied to high LET 

particles, similar approaches introduced an objective based on the 
equivalent uniform dose271,272 or its generalized form.273 Artificial in-
teligence-driven optimization is currently used in some general treat-
ment planning solutions272 but still not used in dedicated biological 
dose optimization methods. A new frontier is undoubtedly in this 
direction.

Modeling immunologic radiation action

Immune-modulating effects are increasingly exploited clinically in 
combination with immune checkpoint blockers. Model attempts are still 
rare, mainly because the immune system works as a complicated net-
work of cells and signals, and their interplay with radiation burden is 
not sufficiently understood. While existing models are mostly tailored 
for photon radiation,274 some models consider application to particle 
radiation.275,276 Particle radiation may offer enhanced effectiveness 
in achieving a systemic antitumoral response, including abscopal 
effects and sparing of lymphocytes, which are key players in the 
immune response.277

Modeling spatial fractionation

Current modeling efforts focus on SFRT mechanisms related to cell- 
to-cell signaling and the immune system. Free radicals and reactive 
oxygen species are the first chemicals generated and transported be-
tween cells. Numerous studies have investigated their production and 
diffusion in silico.278-280 Experimental assays have proven the in-
volvement of these and other later generated species (Ca2+, NO, exo-
somes, cytokines, and other proteins) in bystander-like effects,281,282

but there are few experimental studies quantifying their production and 
cell survival models reflect that, for example.283 In van Luijk et al284

and Asperud et al,285 it was found that the inclusion of a nonlocal repair 
factor in their NTCP empirical model was key, supporting the idea of 
the immune system playing a role in SFRT. More recent analytical 
studies285 managed to model tumor volume growth by considering the 
activation of cytotoxic T-lymphocytes after partial and full irradiation 
of the tumor volume.

Modeling FLASH effects

While the dose rate effect for protracted irradiation has been 
adequately described by current models,286 it appeared very hard to 
reconcile the observed protective and differential effects in the high 
dose rate range. Most research was concentrated on the chemical 
stages. Previous research in spatiotemporal effects of tracks287 was 
exploited, which contributed to determining the implausibility of 
some of the initially proposed hypotheses, such as transient hypoxia 
for oxygen depletion26 and the early intertrack recombination.288 In 
this context, a clear LET dependence was emphasized289,290 and led 
to the hypothesis that high LET should either correlate with a strong 
reduction of the protective effect15 or several mechanisms should be 
discarded, focusing on others,291 or there is a different type of 
FLASH effect, specific for ions.292 Besides mechanistic models, a 
successful phenomenological description of the FLASH effect has 
been proposed.293

Closing remarks

This review provided a panoramic overview of critical research to-
pics and emerging new frontiers in radiobiology, highlighting the 
transformative innovations and techniques reshaping the field. Particle 
therapy should have distinct clinical advantages over conventional RT, 
particularly for heavy-ion and multi-ion approaches, and a robust un-
derstanding of the underlying radiobiology is critical to exploiting these 
benefits to enhance patient care. However, to date, we have effectively 
only scratched the surface of what appears possible.
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We have entered a transformative era in radiobiology, one that 
transcends the traditional boundaries defined by physics and treatment 
planning verification. Historically, radiobiology was predominantly the 
domain of physicists, focusing primarily on the physical aspects of ra-
diation and its application in treatment planning. This foundational 
work was crucial in ensuring the safety and efficacy of RT. However, we 
have now moved into a new era of radiobiology, where the focus has 
shifted toward understanding the molecular and systemic mechanisms 
of radiation response, and the differing effects noted on a per-ion, per- 
treatment, per-method basis. This new approach is not just about de-
livering radiation to a target; it is about comprehending the biological 
responses from the organism itself down to the molecular drivers eli-
cited by different irradiation modalities.

However, for further advancements, a robust funding infrastructure 
is needed, beginning with a framework for simpler and faster access to 
particle facilities. New experimental rooms should be dedicated to 
radiobiology in existing PT centers, and new centers should be devel-
oped with a robust study of the underlying radiobiology in mind. 
Today, securing an hour or 2 of beamtime may require over 6 months of 
applications, paperwork, and planning. A network is necessary that 
allows those working in this sector to know the facilities that enable in 
vitro and in vivo experiments and to understand the procedures for 
accessing these facilities in a rapid manner. In the meantime, radio-
biologists should explore new ways to perform experiments, in-
vestigating novel radiobiology model systems and allowing for detailed 
explorations of cellular and molecular mechanisms.

Traditional radiobiology requires advanced modeling techniques, 
including RBE modeling for treatment planning, NTCP modeling, and 
others, but we must recognize that today’s radiobiology requires un-
derstanding and as a discipline needs new and advanced models for 
immunologic radiation action, spatial fractionation, and FLASH effects, 
among others, in order to provide deeper insights into the complex 
interactions between radiation and biological systems.

This new era of radiobiology is characterized by a comprehensive 
understanding of the molecular underpinnings of RT. It is an exciting 
time where interdisciplinary collaboration is essential, combining the 
expertise of physicists, biologists, and clinicians to develop innovative 
treatments that are both effective and safe.
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