Rationale For, and Advances in Clinical Charged Particle Therapy

Jerry D. Slater, MD

Professor and Chair

Loma Linda University Radiation Medicine

Evolving Role of Radiation in Cancer Treatment

- First utilized in 1896 for cancer therapy
- Improvements in equipment and delivery capabilities over the last 50 years led to radiation therapy being one of the most effective curative treatments for local / regional cancer
- The increase in cancer cures with radiation over the last century are directly related to:
 - the ability to target and deliver higher doses to the tumor while
 - reducing the damage to surrounding normal tissues

Radiation Sensitivity Tumor

Radiation Sensitivity Normal Tissue Dose Effect

Modifiers of Therapeutic Ratio

- Radiation Sensitizers
- Radiation Protectors
- Fractionation
- Volume of normal tissue

Radiation Sensitivity Normal Tissue Volume Effect

Types of Radiation Used Clinically

Photons (x-rays and gamma rays)

Particles (subatomic)

Why Particle Therapy?

- Fundamental principles of radiation delivery have not changed despite technical changes
 - The primary goal of radiation oncology has always been to hit the target and eliminate radiation to non-target tissues
 - There is no known threshold dose below which radiation becomes potentially harmless
- Brachytherapy early 1900's
- Ortho-Megavoltage x-rays 1930's
- Particle Therapy 1950's

Fundamental Tools of Radiation Oncology

TCP and NTCP

Figure 1.5 Dose-response curves for tumor control probability (TCP) (thick solid line) and for normal tissue complication probability (NTCP) (a thin solid line for large volume treatment and a dotted line for a reduced volume of irradiated normal tissues.)

Suit and Chu 2008 From Delaney and Kooy eds.

Evolution of Radiation Delivery

- Within each modality, radiation biology and physics have found ways to improve delivery over time
- Brachytherapy
 - Surface, intracavitary, interstitial, low and high dose rate
- Megavoltage
 - High energy, 3D conformal, IMRT etc
- Charged particles
 - 3D planning, 'IGRT', match, patch, and stack Bragg peaks,
 IMPT etc

Particles

- The controllability of particles depends primarily on 3 factors
 - Stability
 - Mass
 - Charge
 - Electrons
 - Protons
 - Neutrons
 - Heavy Ions
 - Pi Mesons

Selecting The Optimum Radiation Type

- Controllability of radiation beam
- Biologic effect
- Cost of delivery
- Is there an ideal beam?

Advances in Oncology

- Imaging becomes more important as precision of hitting target increases
- Advances in imaging
 - CT
 - MRI
 - PET
- Accelerators / Computers
- Treatment Planning
- Treatment Delivery
- Sensitizers

Relative Advantage of Particles

C Dose Distribution Advantage Ne Pι **MESONS** Co⁶⁰ 250kV X-ray

High LET Advantage ——

Particle Therapy

Neutrons

- Multiple facilities built in 1980's
- High toxicity vs tumor control
- Uncertainty of RBE for different normal tissues

Developmental Process of Particle Therapy Protons

- Theoretical Scientific Rationale
- Scientific Validation
 - 1950's 1980's
- Technical and Operational, and Clinical Validation
 - 1990's present

Scientific Rationale: Protons 1940's

 1946 Robert R. Wilson, PhD proposed protons in the treatment of cancer

Scientific Rationale: Protons

- Experimental data obtained in the 1950's demonstrated that the RBE of SOBP protons as compared to Co⁶⁰ is approximately 1.1.
- Low proton RBE = ease of use in clinical situations if you can give the dose with x-rays, you can safely do so with protons.
- The physical and biologic basis of protons

Integral Dose

Era of Scientific Validation

 The physical and biologic basis of protons appeared to make for a modality to investigate for clinical use

 The next natural step was to try and validate the theoretical ideas

Proton Development 1950's Berkeley, USA

- Drs. Lawrence and Tobias
- 1954-1957
- 30 patients with protons to the pituitary

- Helium and heavy ion program began in 1957 – 1993
 - Drs. Castro and team
- Radiosurgery program
 - Drs. Fabrikant and team

Proton Development 1950's Uppsala, Sweden

 First patient 1957 for large malignant tumor of pelvis

 Radiosurgery program began in 1958 with Drs. Leksell and Larsson

Proton Development 1960's

- 1961 radiosurgery program at MGH/HCL with Dr. Kjellberg
 - NEJM 278:732, 1968
 - NEJM 309:269, 1983
- 1967 proton began in Dubna,
 Russia
 - Program ran through 1996 with124 pts
- ITEP in Moscow, Russia began treating in 1969
 - completed 4162 patients through 7/09

Proton Development 1970's

- Development of ocular melanoma treatments at MGH/HCL
 - Dr. Gragoudas and team
 - Dr. Koehler and team
- 1006 patients treated at MGH/HCL: 1975-1986
 - 96% of patients had tumor controlled in the eye at 5 years*
 - Overall, 89% retained eye, including 97% of small lesions⁺
 - Greater than 50% of patients retain vision better than 20/100^

*Munzenrider et al. IJROBP. 17: 493-498 †Munzenrider et al. IJROBP. 15: 553-558 ^Gragoudas et al. Ophthalmology. 94: 349-353

Proton Development 1970's – 1980's

- Large field fractionated protons at MGH/HCL
 - Drs. Suit, Goitein, &Munzenrider
 - HCL Staff
 - Chordomas,chondrosarcomas

- St Petersburg, Russia
- Chiba and Tsukuba
 University, Japan

Scientific Validation Early Results of Proton Therapy

- Dose distribution advantages
- Biologic effects
- Not "experimental"
- Preliminary studies showed clinical effects at least as good if not significantly better that previous approaches

Proton Laboratory Research Facilities 1950's – mid 1980's

Bring Protons into Clinical Facility?

- Technology too great
- Accelerators too large for hospital
- Too many personnel necessary to keep operational
- Too expensive to build
- Too expensive to maintain

Technical, Operational, and Clinical Validation 1990's - present

Challenges in Integrating Particles into 'Routine Radiation Oncology'

- Challenges of particle therapy in the 1980's
 - Bring this technology into the clinical setting with advantages of hospital infrastructure
 - Develop hardware and software to make this possible
 - Develop facility and infrastructure to make it run as "effortlessly and efficiently" as conventional therapy

- Integrate the technologies, facilities, personnel so that the differences, for the most part, are transparent
 - Modify any preexisting structure to facilitate integration

Integrating Particles into 'Routine Radiation Oncology'

- Hospital based particle therapy
- Loma Linda University
 - James M. Slater, MD, Daniel Miller,
 PhD and team

Proton Therapy Cooperative Oncology Group (PTCOG)

- PTCOG was started in mid 1980's by James Slater, MD at LLU and Herman Suit, MD at MGH/HCL
- Purpose to bring together an international group to develop requirements for clinical proton facility

Multi institutional Clinical Trials

- Proton Radiation Oncology Group (PROG)
 - NCI-ACR funded
- Chordoma Chondrosarcoma of Skull Base
 - Dose randomization
 - MGH/HCL, LBL, LLU
- Early Prostate
 - Dose randomization
 - 70.2 vs 79.2 Gy
 - LLU, MGH/HCL
- Oropharynx and Paranasal Sinuses

Clinical Expansion mid 1990's

- Expanded Clinical Investigations
 - Prostate (early)
 - Oropharynx cancer
 - Macular Degeneration
 - Pediatrics
 - Early lung cancer
 - Primary liver cancer
 - Early breast cancer
 - Locally advanced lung cancer

COUNTRY	WHO, WHERE	PARTICLE	S/C/SC* MAX. ENERGY (MeV)	BEAM DIRECTIONS	START OF TREATMENT	TOTAL PATIENTS TREATED	DATE OF TOTAL
Canada	TRIUMF, Vancouver	р	C 72	1 horiz.	1995	182	Dec-14
Czech Republic	PTC Czech r.s.o., Prague	Р	C 230	3 gantries, 1 horiz.	2012	357	Dec-14
China	WPTC, Wanjie, Zi-Bo	р	C 230	2 gantries, 1 horiz.	2004	1078	Dec-14
China	IMP-CAS, Lanzhou	C-ion	S 400/u	1 horiz.	2006	213	Dec-14
China	SPHIC, Shanghai	Р	S 250	3 horiz.	2014	13	Dec-14
China	SPHIC, Shanghai	C-ion	S 430/u	3 horiz.	2014	22	Dec-14
England	Clatterbridge	р	C 62	1 horiz.	1989	2626	Dec-14
France	CAL, Nice	Р	C165	1 horiz.	1991	5205	Dec-14
France	CPO, Orsay	р	S 250	1 gantry, 2 horiz.	1991	7004	Dec-14
Germany	HZB, Berlin	р	C 250	1 horiz.	1998	2525	Dec-14
Germany	RPTC, Munich	р	C 250	4 gantries, 1 horiz.	2009	2307	Dec-14
Germany	HIT, Heidelberg	Р	S 250	2 horiz., 1 gantry**	2009, 2012	824	Dec-14
Germany	HIT, Heidelberg	C-ion	S 430/u	2 horiz., 1 gantry**	2009, 2012	1723	Dec-14
Germany	WPE, Essen	Р	C 230	4 gantries***, 1 horiz.	2013	139	Dec-14
Germany	PTC, Uniklinikum Dresden	Р	C 230	1 gantry	2014	first patient	Dec-14
Italy	INFN-LNS, Catania	Р	C 60	1 horiz.	2002	350	Dec-14
Italy	CNAO, Pavia	Р	S 250	3 horiz., 1 vertical	2011	111	Dec-14
Italy	CNAO, Pavia	C-ion	S 480/u	3 horiz., 1 vertical	2012	318	Dec-14
Italy	APSS, Trento	Р	C 230	2 gantries, 1 horiz.	2014	5	Dec-14
Japan	HIMAC, Chiba	C-ion	S 800/u	horiz.***, vertical***	1994	8841	Dec-14
Japan	NCC, Kashiwa	Р	C 235	2 gantries***	1998	1560	Dec-14
Japan	HIBMC, Hyogo	Р	S 230	1 gantry	2001	4652	Dec-14
Japan	HIBMC,Hyogo	C-ion	S 320/u	horiz.,vertical	2002	2146	Dec-14
Japan	PMRC 2, Tsukuba	Р	S 250	2 gantries	2001	3416	Dec-14
Japan	Shizuoka Cancer Center	Р	S 235	3 gantries, 1 horiz.	2003	1757	Dec-14
Japan	STPTC, Koriyama-City	р	S 235	2 gantries, 1 horiz.	2008	2797	Dec-14
Japan	GHMC, Gunma	C-ion	S 400/u	3 horiz., 1 vertical	2010	1486	Dec-14
Japan	MPTRC, Ibusuki	р	S 250	3 gantries	2011	1317	Dec-14
Japan	Fukui Prefectural Hospital PTC, Fukui City	P	S 235	2 gantries, 1 horiz.	2011	428	Dec-13
Japan	Nagoya PTC, Nagoya City, Aichi	Р	S 250	2 gantries, 1 horiz.	2013	627	Dec-14
Japan	SAGA-HIMAT, Tosu	C-ion	S 400/u	3 horiz., vertical, 45 deg.	2013	547	Dec-14
Japan	Aizawa Hospital PTC, Nagano	р	C 235	1 gantry	2014	first patient	Oct-14

Poland	IFJ PAN, Krakow	р	C 60	1 horiz.	2011	85	Dec-14
Russia	ITEP, Moscow	р	S 250	1 horiz.	1969	4368	Dec-14
Russia	St.Petersburg	р	S 1000	1 horiz.	1975	1386	Dec-12
Russia	JINR 2, Dubna	р	C 200****	1 horiz.	1999	1069	Dec-14
South Africa	NRF - iThemba Labs	р	C 200	1 horiz.	1993	524	Dec-14
South Korea	NCC, Ilsan	Р	C 230	2 gantries, 1 horiz.	2007	1496	Dec-14
Sweden	Svedberg Lab.,Uppsala	р	C 200	1 horiz.	1989	1431	Dec-14
Switzerland	CPT, PSI, Villigen	р	C 250	2 gantries****, 1 horiz.	1984, 1996, 2013	7364	Dec-14
USA, CA.	J. Slater PTC, Loma Linda	р	S 250	3 gantries, 1 horiz.	1990	18362	Dec-14
USA, CA.	UCSF, San Francisco	р	C 60	1 horiz.	1994	1729	Dec-14
USA, MA.	MGH Francis H. Burr PTC, Boston	Р	C 235	2 gantries***, 1 horiz.	2001	8107	Sep-14
USA, IN.	IU Health PTC, Bloomington	р	C 200	2 gantries***, 1 horiz.	2004-2014	2200	Dec-14
USA, TX.	MD Anderson Cancer Center, Houston	Р	S 250	3 gantries***, 1 horiz.	2006	5838	Dec-14
USA, FL.	UFPTI, Jacksonville	р	C 230	3 gantries, 1 horiz.	2006	5376	Dec-14
USA, OK.	ProCure PTC, Oklahoma City	Р	C 230	1 gantry, 1 horiz, 2 horiz/60 deg.	2009	1690	Dec-14
USA, PA.	Roberts PTC,UPenn, Philadelphia	Р	C 230	4 gantries, 1 horiz.	2010	2522	Dec-14
USA, IL.	Chicago Proton Center, Warrenville	Р	C 230	1 gantry, 1 horiz, 2 horiz/60 deg.	2010	1782	Dec-14
USA, VA.	HUPTI, Hampton	р	C 230	4 gantries, 1 horiz.	2010	1200	Dec-14
USA, NY.	ProCure Proton Therapy Center, New Jersey	Р	C 230	4 gantries	2012	1168	Dec-14
USA, WA.	SCCA ProCure Proton Therapy Center, Seattle	Р	C 230	4 gantries	2013	420	Dec-14
USA, MO.	S. Lee Kling PTC, Barnes Jewish Hospital, St. Louis	Р	SC 250	1 gantry	2013	149	Dec-14
USA, TN.	Provision Center for Proton Therapy, Knoxville	Р	C 230	3 gantries	2014	100	Aug-14
USA, CA.	Scripps Proton Therapy Center, San Diego	Р	C 250	3 gantries, 2 horiz.	2014	220	Dec-14
USA, LA.	Willis Knighton Proton Therapy Cancer Center, Shreveport	Р	C 230	1 gantry	2014	28	Dec-14
USA, FL.	Ackermann Cancer Center, Jacksonville	Р	SC 250	1 gantry	2015	1	Apr-15