

Introduction to Radiation Biology

Jan Schuemann

PTCOG 2014

J. Schümann

HARVARD MEDICAL SCHOOL

The cell

Structure of a Generalized Cell

Cell Cycle

Radiobiology experiments: Cell Survival **Measuring a cell survival curve**

Cell deathloss of reproductive capacity; loss of ability to form a colony

RADIATION ONCOLOGY MEDICAL SCHOOL PTCOG 2015

In unirradiated control: Plating Efficiency (PE) = # colonies/# cells plated In irradiated samples: Surviving Fraction = # colonies/(# cells plated x $PE/100$)

MASSACHUSETTS

J. Schümann

Relative Biological Effect - RBE

RBE is a concept to relate radiation effectiveness of proton and ion t

Mathematical Models to describe biological response

Linear Quadratic Model

Assumption – two components to cell killing by IR One (α) proportional to dose One (β) proportional to square of the dose

 $SF = e^{-(\langle D + \mathbb{B}D^2 \rangle)}$

 \langle = initial slope at low doses \circledR = slope at high doses $\langle \sqrt{m}ratio = dose$ at which linear and quadratic components are equal (describes the "curviness" of the survival curve)

There are several other models

Dose

Clinical application of RBE in proton therapy

 Doses in particle therapy are corrected for RBE

prediction using RBE=1.1 and different RBE models

- For proton therapy a generic RBE=1.1 is used
- RBE at center of an SOBP is ~1.1
- assuming a constant RBE may not be sufficient for more advanced therapy approaches

Dose in particle therapy is prescribed as Gy(RBE) or GyE

MASSACHUSETTS

Clinical application of RBE in ion therapy

 \blacksquare RBE of ion fields varies strongly across treatment field

RBE of ions?... it's complicated

Impact of 2.5 $< \alpha/\beta <$ 3.5

- Treatments prescribed to achieve constant biological dose in target
- Need to model RBE to prescribe treatment

Relative Biological Effect

RBE depends on

- tissue
- •radiation type
- dose
- energy/LET
- •endpoint
- fractionation
- etc.

"I think you should be more explicit here in step two."

RBE as a function of tissue/endpoint

RBE as a function of tissue/endpoint

RBE is a concept to relate radiation effectiveness of proton and ion t

RBE is generally determined from:

- Colony formation
- **Foci formation**
- **Micronuclei formation**

Scale-mismatch

The relevant endpoints are clinical:

tumor control

normal tissue complications

- **early effects such as erythema**
- **late effects such as lung fibrosis, lung function, spinal cord injury, or necrosis**

RBE as a function of dose

- **RBE decreases with increasing dose**
- **The lower the LET, the smaller the effect**

MASSACHUSETTS

The effective dose out of field is lower for proton therapy than Carbon therapy!

RADIATION ONCOLOGY MEDICAL SCHOOL PTCOG 2015

RBE as a function of energy/LET

Simulated with

Radiation is more effective when energy depositions are more

concentrated in space

J. Schümann

RBE as a function of energy/LET

RBE as a function of energy/LET

Increased effectiveness as a function of depth

... but there is more

Fractionated Treatment

The 4 R's of Fractionated Radiation Therapy

Fractionated Treatment

Redistribution or Reassortment in Tumors

RBE depends on Fractionation

RBE increases with fractionation. Effect is due to shoulder on the X-ray curve.

(from Hall 2000)

J. Schümann

Oxygen is the best known and most general radiation sensitizer.

The Oxygen Effect Ratio (OER) is:

Dose(hypoxia) OER = $\frac{Dose(nypoxia)}{Dose(oxyqenated)}$

OER is usually about 3 at high radiation doses, but can be lower at low doses.

(hypoxia means low oxygen; anoxia means no oxygen)

(from Hall 2000)

Fractionated Treatment

Reoxygenation in Tumors

- Phenomenon by which hypoxic cells become oxygenated after a dose of radiation
- Human tumors may contain 10-15% hypoxic cells
- Time interval between fractions needs to be long enough to allow complete reoxygenation
- **F** "Fast" reoxygenation: One mechanism may reflect reperfusion of temporarily closed vessels
- **"Slow" reoxygenation of** chronically hypoxic cells may occur as the tumor shrinks

Hall textbook

Dose Rate Effect

Dose Rate Effect

As dose rate is reduced:

- slope of survival curve decreases
- shoulder decreases

At very low dose rates:

- all sub-lethal damage is repaired during exposure
- repopulation may increase survival or tumor growth

RBE Summary

RBE depends on

Tissue: RBE increases with decreasing α/β Dose: RBE increases with decreasing dose LET: RBE increases as a function of depth Dose Rate: Higher dose rate, higher cell kill Particle Type: Higher LET, higher RBE (up to threshold) Fractionation: RBE increases with increase in fractions

- For an optimal treatment plan, we need to consider all of these parameters at the same time
- •Many more biological factors to be considered

$\mathcal{L}_{\mathcal{A}}$ How do we use RBE in clinical treatment planning?

- \mathbf{r} Protons: RBE = 1.1
- \mathcal{L} Ions model RBE

HIT: Local Effect Model (LEM) for calculation of RBE

Idea:

- Determine number of lethal damages in the nucleus
- $\overline{}$ Use radial dose distributions around $\frac{3}{5}$ ion tracks (ion dependent)
- Combine photon dose response and microscopic dose distribution
- Overlay tracks and integrate lethal damages in nucleus Local biological effect:

$$
S = e^{-N \ln t + n}
$$

$$
\overline{N}_{\text{front}} = \int \frac{-\ln S_X(d(x, y, z))}{V_{\text{Newton}}} dV_{\text{Newton}}
$$

MASSACHUSETTS

d(x,y,z): local dose

M. Scholz et al.

RADIATION ONCOLOGY MEDICAL SCHOOL PTCOG 2015

Carbon therapy at HIMAC

Start with experience from neutron treatment at NIRS

Carbon ions most like neutrons

Same biological effect at Carbon beam at LET \sim 80keV/ μ m Neutron RBE = 3

Comparing LEM and NIRS (HIMAC)

Similar physical dose for LEM corresponds to higher RBE-weighted dose Steeper falloff for NIRS

Input parameters for LEM and HIMAC

LEM Input Parameters:

- X-ray Survival Curves: Experimental data according to LQ $S = e^{-(\alpha \theta + \beta \theta^2)}$
- D_t : dose threshold additional assumption: Transition from shoulder to exponential shape at high doses

 $= e^{-x_{\max}(H-H_1)}$ D = D.

- Radial Dose Distribution ($\sim 1/r^2$) Monte-Carlo (M. Krämer), Analytical Models (Katz, Kiefer), Experimental Data
- Target Size (Nuclear Size) Experimental Data

HIMAC Input Parameters:

Neutron RBE as observed for HSG cells at NIRS

Normalize Carbon RBE to neutron RBE at 80 keV/µm

Neutron RBE = 3

J. Schümann

Outlook (protons) Dose LET_{4} 100% **IMPT Plan 1** 100% **IMPT Plan 2**

LET is highest at end of range \rightarrow RBE increases Same dose distribution does not mean same LET distribution

J. Schümann

Grassberger et al., IJROBP, 80, 1559 (2011)

Grassberger et al., IJROBP, 80, 1559 (2011)

Take away messages, to remember when planning:

We need to understand the biological processes better

- currently modeling protons with constant RBE
- Carbon RBE from limited data
- Should use: ion specific biological effect (n/a)
- Include advanced imaging
	- advanced imaging could determine regions of hypoxia and other tumor heterogeneities

Structure of a Generalized Cell

To go towards biological effect based plans we need to:

- stop using flat dose distribution
- use all the information that we can obtain
- rethink what is possible: determine biology from the bottom up?

Thanks **MGH** GENERAL HOSPITAL

PTCOG 2015

For providing a lot of material shown today to:

- **Harald Paganetti**
- **Kathy Held**

1811

J. Schümann und State

Henning Willers