Ophthalmic tumors

Wolfgang Sauerwein

Today's menu

- Introduction and some basics on uveal melanoma
- Brachytherapy for intraocular tumors
- Proton therapy for intraocular tumors
- Proton therapy for melanoma of the conjunctiva
- Future developments in ophthalmic brachytherapy
- High energy beams in ocular tumors
- How to choose the optimal approach in an individual patient?

Ophthalmic tumors

Rare diseases

In Germany 800 new cases per year (>500 of them treated in Essen)

What is different to "normal" radiotherapy?

- Very small treatment volume (electron equilibrium??)
- Very close to important functional structures
- Treated in dedicated centers, which have different equipments

Special techniques are mandatory

Ophthalmic tumors: Target volumes

• the entire eye (metastases)

- Localized tumor in the eye (melanoma, retinoblastoma)
- the retina and the vitreous (retinoblastoma, lymphoma)
- the orbit (retinoblastoma, melanoma...)
- others (iris, conjunctiva...)

Ophthalmic tumors: Irradiation techniques

Brachytherapy

Ophthalmic tumors: Irradiation techniques

External beam radiotherapy

Brachytherapy

INTRAOCULAR TUMORS

Irradiation of a tumor in the eye:

uveal melanoma

Protection

of the optic nerve, the papilla and the macula, the orbit

- Dose >100 Gy
- Techniques brachytherapy using radioactive plaques - protons

Metastases in uveal melanoma

risk factors

genetics

localization

size

extra-ocular growth

Chromosome 3 status predicts survival

Tumour related survival of 374 enucleated patients (1998 – 2008)

Ru-106 plaques

- β-irradiation with a background of γ Bremsstrahlung
- maximal energy of β rays: 3,53 MeV
- half-life: 366 days
- steep dose gradient:
 in 6 mm depth ~ 10% of dose rate at the surface
- big choice of different applicators
- prescribed dose:

at the sclera 700 (- 1500)Gy

at tumor apex >130 Gy

indicated for tumors
 ≤ 6 mm height

Ru-106 plaques

I-125 plaques

- Photon irradiation mean energy 27 35 keV
- Half life: 60 days
- in 10-12 mm depth 10% of dose rate at the surface
- Plaques have to be produced at the hospital (8-12 seeds/plaque)
- Prescribed dose:

at the sclera 300(- 500)Gy at tumor apex >80 Gy

• Indication for tumors 8 - 12 mm height

I-125 plaques

plaque in stainless steel with Persepex inlay

I-125 / Ru-106 bi-nuclide-plaque

Dose distribution of a ¹⁰⁶Ru-plaque

tumor: 8 mm dose: apex: 100 Gy base: 2200 Gy sclera opposite: 1Gy

Dose distribution of a ¹²⁵I-plaque

tumor: 8 mm dose: apex: 100 Gy base : 440 Gy sclera opposite: 15 Gy

Dose distribution of a bi-nuclide plaque

tumor: 8 mm

dose: apex: 100 Gy base 1200 Gy sclera opposite: 9 Gy

I-125 / Ru-106 bi-nuclide-plaque

Advantages as compared to a ¹²⁵I-plaque

- > contact dose
- < integral dose
- > dose to the tumor
- < dose to structures at risk

For tumors with height 7 – 11 mm

I-125 / Ru-106 bi-nuclide-plaque: Enucleation rate

I-125 / Ru-106 bi-nuclide-plaque: survival

Surgical technique

Local recurrences after Ru-106

Visual acuity after after Ru-106

Visual acuity after I-125

Figure 1. Kaplan-Meier estimates showing the proportion of patients free of poor visual acuity (20/200 to no light perception) over time according to tumor thickness for 1106 patients with uveal melanoma treated with plaque radiotherapy.

Shields et al. 2000

Ru-106: limits

scleral necrosis

incomplete destruction

Tumor height

I-125: limits

Complications

- Long standing exsudative retinal detachment
- Radiation cataract
- Radiation induced optic neuropathy
- Radiation retinopathy, ocular ischemia, neovascular glaucoma

Proton treatment of ocular tumors

Depth dose distribution

Dose distribution in the Bragg peak:

not convenient to treat a tumor. The peak needs to be enlarged, (or spread-out, or modulated)

Depth dose distribution

Dose distribution in the spread-out Bragg peak:

now suitable to treat a tumor with safety margins

Wedge filter

The dose distribution can be optimized by a wedge filter

sparing the macula while maintaining a <u>sufficient safety</u> <u>margin</u>

Bolus

Bolus

3D Conformation of the proton beam

dose distributions

Preparation of the patient: positioning of markers

CT scan after clipping always included

37 19.05.2015 Sauerwein PTCOG 54 San Diego 2015

Positioning devices for the patient

Challenge for treatment planning:

Does the model represent the reality ?

All the calculations made on a relatively simple mathematical model of the eye.

The anatomy may differ from the model. To be accurate, the validity of the model has to be checked by CT and the model to be modified if necessary.

CT-scan

If the model is not accurate, you will not hit the target

Dose distributions for the three different positions

lateral view

	20%	50%	90%		
Retina	32	27	22	% are	B
Surface Of The Globe	40	35	13	% are	S
Volume Of The Globe	3.9	3.4	2.2	сс	۷
Lens Volume	100	100	75	% vo	Ľ
Lens Periphery	100	100	37	%	Ľ
Ciliary Body	95	88	11	% vo	С
Optic Disc	0	Ō	0	% are	0
Macula	Ō	Ō	0	% vol_	М
Length Of Optic Nerve	0.1	0.0	0.0	mm	Ľ
Surface Of The Tumo	100	100	100	Pare	S
Upper Eyelid Rim					U
Lower Eyelid Rim					L
[[<u>or</u>	1		ŝ	

		20%	50%	90%	
re	Retina	29	26	22	% area
re	Surface Of The Globe	26	23	19	% area
	Volume Of The Globe	1.4	1.2	0.9	сс
d.	Lens Volume	0	0	0	% /ol.
L	Lens Periphery	0	Ō	0	%
d.	Ciliary Body	12	7	2	% /ol.
re	Optic Disc	0		0	% area
oL	Macula	0		0	% vol.
	Length Of Optic Nerve	0.0	0.0	0.0	roro
re	Surface Of The Tumo	100	100	100	%area
	Upper Eyelid Rim				
	Lower Eyelid Rim				
1000	[<u>OK</u>			

	20%	50%	90%
Retina	25	22	18 % area
Surface Of The Globe	19	17	14 % area
Volume Of The Globe	1.1	0.9	0.6 cc
Lens Volume	0	0	0 % vol.
Lens Periphery	0	0	0 %
Ciliary Body	1	0	0 % vol.
Optic Disc	0	0	0 % area
Macula	0	0	0 % vol.
Length Of Optic Nerve	0.0	0.0	0.0 mm
Surface Of The Tumo	100	100	100 % area
Upper Eyelid Rim			
Lower Eyelid Rim			
	<u>0K</u>		

Outcome of Uveal Melanoma treated in Nice (n= 2500)

Tumors of the conjunctiva:

"orphan diseases"

non-Hodgkin lymphoma malignant melanoma squamous cell carcinoma

extremely rare lesions:

adeno-squamous carcinoma

rhabdomyosarcoma

Complex target volume

Complex geometry The problem of the fornix The problem of the depth

Organs at risks in the neighborhood

Target volume is also organ at risk

ballistic precision of the proton beam

- homogeneous irradiation of a complex treatment volume (necessity to treat large volume of bulbar and tarsal conjunctiva while sparing the internal structures in the eye)
- steep dose gradients at the edges and depth: protection of healthy structures

Proton irradiation of conjunctival tumors

Treatment technique: bolus

Treatment technique

51

Semi-hemispherical plexiglas-compensator reduces the proton energy and modulates their range to protect healthy structures

Treatment technique

Dose distribution

Treatment technique

Individual plexiglas-compensator

Future developments in brachytherapy: Positioning

Mini-SMD-LEDs

Attached to the plaque

control of localisation of the plauque and it's <u>orientation</u>

Easily detectable through the sclera

Optimized positioning

Mini-SMD-LEDs

Integrated in the plaque

Offers the possibility to control the postion of the plaque during treatment

Recent developments: highly precise plaques (HPS)

Recent developments: highly precise plaques (HPS)

The principle:

Microcollimation of single seeds

The future of proton therapy for eye tumors?

Dedicated machine 65 MeV EYEPlan Pulsed beam Pencil beam scanning Image based treatment planning 62-230 MeV

High energy beams and PBS for small, superficial tumors

Collaboration

"work in progress"

Cyclotrons with continuous beams

62

Dedicated beam vs. degraded high intensity beam

65 MeV without degrader

200 MeV degraded

of Dmax	20%	50%	90%	20%	50%	90%
Surface globe [%]	20	13	8	28	25	13
Volume globe [cm ^{2]}	1.9	1.5	1.0	2.6	2.2	1.5
Volume vitrous [%]	57	37	25	85	61	54
Ciliary body [%]	52	46	36	59	55	45
Cornea [%]	55	47	36	72	64	51

Melanoma of the iris, identical target volume

How to select the optimal radiation technique?

The possibility of a choice between different treatment modalities has not been sufficiently investigated.

Published literature does not give any advice to answer the question:

what is the best solution for an individual patient

64 19.05.2015 Sauerwein PTCOG 54 San Diego 2015

Physical aspects

Type of applicator/ irradiation	¹⁰⁶ Ru	applicator mixed ¹⁰⁶ Ru/ ¹²⁵ I	¹²⁵ I	protons
Maximal tumor thickness allowing an adequate dose distribution	5-7mm (depending from applicator)	6-10 mm (important influence of the activity)	10-15 mm (depending from applicator)	Homogeneous dose distribution always possible
Depth dose distribution behind the target volume (% of dose at the apex)	1 mm: ca. 60% 5 mm: ca. 10%	ca. 75 % ca. 10 %	ca. 80-90% ca. 30-50%	ca. 50% 0
Dose to normal tissues prior the target volume (% of dose at the apex)	0	0	0	ca 30-60%
Lateral dose distribution (% of dose at the apex)	1 mm: ca. 20% 5 mm: ca. 3%	ca. 30-50 % ca. 5-10 %	ca. 20-60% ca. 5-25%	ca. 50% 0

Retinoblastoma

brachytherapy ¹⁰⁶ Ru vs. ¹²⁵ I	Essen (2005)	Shields et al (2001)
Treatment period	1979 - 2005	1976 - 1999
Treated tumors	175 (¹⁰⁶ Ru)	178 (¹²⁵ I)
Mean age [months]	23 (0.2 – 150)	12 (1 – 96)
Tumour diameter [mm]	7.5 (1.5 – 22)	7.7(1-18)
Tumour height [mm	3.7 (1 - 7.6)	4.1 (0.5 – 12)
Distance to optic disk [mm]	7.2 (0-21)	6.4 (0-17)
Retinal detachment	22 / 175	31 / 178
Vitreous seeding	37 /175	15 / 178
Primary brachytherapy	56 / 175	60 / 178
Mean duration of radiation	69 h	68 h
Mean dose apex / base (rounded)	138 Gy / 419 Gy (NIST)	42 Gy /155 Gy
Tumour recurrence / mean interval	4.6 % / 12.9 Monate	17% / 8 Monate
Radiation retinopathy	12 %	26 %

Modified penEasy/PENELOPE simulation

CCB plaque, 7.5 mm apical height tumour

Strahlenther Onkol (2013) <u>189</u>, 68-73

Modified penEasy/PENELOPE simulation

Dose volume histograms?

Strahlenther Onkol (2013) <u>189</u>, 68-73

The evaluation of the clinical outcome

- All authors report excellent tumor control (and good functional outcome)
- Any optimization of ophthalmic radiotherapy has to focus on side effects
- Side effects and damage to normal structures are often not mentioned
- In contrast to other anatomical sites, a standardized reporting system of side effects after ophthalmic radiotherapy does not exist

A standardized reporting of side effects is overdue

The Radiation Side Effect Staging Project of the ISOO

Join us at

The First Eye Cancer Working Day on June 1, 2015 in Paris

contact: w.sauerwein@uni-due.de

Joël Herault **Pierre Chauvel** Dirk Flühs **Norbert Bornfeld** Lorenzo Brualla Gaëlle Angellier Henrike Westekemper **Clare Stannard** Jerome Mandrillon Mario Ciocca Andrea Wittig

