

MASSACHUSETTS GENERAL HOSPITAL $C \land N \land C \land R \land C \land N \land C \land R \land C \land R \land T \land R^{sm}$

Physics of Particle Beams

Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

PTCOG 54 Education Session, San Diego, 2015

A Beam is a Bunch of Particles

A beam is a collection of many particles all of whose <u>longitudinal</u> and <u>transverse</u> momentum are close enough and remain more or less close to each other.

MGH ¹⁸¹¹ GE

Particles of Interest

- Photons (γ, X ray)
 - Charge: 0
 - Indirect Ionization
- Electrons
 - Charge: -1
 - Direct Ionization
 - Mass: 0.512 MeV

- Protons
 - Charge: +1
 - Direct Ionization
 - Mass ~ 938 Mev (2,000 m_e)
- Carbon ions
 - Charge: +6
 - Direct Ionization
 - Mass $\sim 12 \cdot m_p$

Photon Interactions with Matter

Photons --- Attenuation

Number of photons decreases exponentially $N_f = N_0 e^{-\mu L}$ Fluence:

 $\Phi = N / A$

Infinite penetration

Exponential ->

Depth

Proton Interactions with Matter

- With *electrons* mediated by Coulomb force (*a*)
 - Excitation
 - Ionization
- With <u>nucleus</u> mediated by Coulomb & nuclear forces (*b-d*)
 - Multiple Coulomb scattering (b), small θ
 - Elastic nuclear collision (c), large θ (c)
 - Inelastic nuclear interaction (d)

Mean electron energy E_{mean} very low ($m_p >> m_e$) E_{mean} independent of proton kinetic energy Interaction probability higher for slower protons

Particle Beams ---- No Attenuation N_0 $N_f=0$

- A heavy charged particle endures multiple interactions through matter, but "stays" in the beam, because it is deflected only slightly.
- It loses only a small fraction of its energy in each interaction (except in "rare" nuclear interactions) until it stops, i.e., continuous slowing down.
- It deposits most energy near the end

Ionization Energy Loss

- Energy of a charged particle dissipated by ionizing collisions:
 - E = Nw, where:
 - N = total number of **ion pairs** created
 - n = specific Ionization (ion pairs/unit length)
 - w = Energy required to produce an ion pair
 - w \sim 30-35 eV for organic matters
 - dE/dx = -S = -wn, where
 - S = Stopping Power (Linear Energy Transfer, LET)
- Mass stopping power:

HOSPITAL

MASSACHUSET

$$\frac{S}{\rho} \equiv -\frac{1}{\rho} \frac{dE}{dx} \qquad \frac{\text{Mev}}{\text{g/cm}^2} \qquad D = \Phi \quad \frac{S}{\rho}$$

 \mathbf{C} A N C E R \mathbf{C} E N T E R^{**}

Dependence on Particle Charge and Velocity

- The **stopping power** FOR A GIVEN MEDIUM depends on the particle velocity and charge,
 - Proportional to z^2
 - Inversely proportional to v^2
 - Not dependent upon the Mass

Ionization Stopping Power

$$\frac{dE}{dx} = \frac{4\pi e^4}{m_e} \quad \frac{z^2}{v^2} NZB$$

 $B = \ln(2m_0V^2) - \ln(I(1-\beta^2)) - \beta^2$

Where:

- E = instantaneous total energy of the particle
- e = electron charge $m_a = electron mass$
- $II_e = \text{Dertials Should Find Strengthered}$
- v = Particle Speed
- ze=Charge of the Particle
- Z= Atomic Number of the absorbing material
- N=#atoms/cubic cm of the absorbing material

Ions with higher charge or lower speed lose energy faster

Particle Range vs Energy

 $C A N C E R C E N T E R^{**}$

Bragg Peak

A Single Proton

Many Protons

Each has different number of interactions Loses different amount of energy each time

Range Straggling

Energy spread increases with depth of penetration Low energy beams have narrower Bragg peaks

C A N C E R C E N T E R[™]

Dependence on Depth

Photons:

- Attenuation, fluence decreasing
- No substantial change in photon energy spectrum
- No change in electron energy spectrum from Compton scattering
- No change in ratio between biological dose and physical dose
- Compton electron energies mostly high → dose buildup near surface

Particles:

- No attenuation, fluence stays constant except near the end
- Particles lose energy gradually
- Energy loss per ion pair stays same
- Ion pairs per unit length increases
- Increase in LET, and possibly in ratio between biological dose and physics dose, i.e., increase in RBE
- Electron energy low \rightarrow no buildup

Multiple Coulomb Scattering p[']

- Protons are deflected in the electric field of the nuclei.
- In general, multiple deflections will occur for each proton
- Play key role in determining lateral dose distribution

MCS Simulated

Mono-energetic incident protons

(Transverse scale greatly exaggerated)

Adapted from Gottschalk

MCS Dependence on Beam Energy

MCS Dependent on Particle Mass

The Loss of Bragg Peak

HARVARD MEDICAL SCHOOL

Lateral Penumbra Changes in Depth

Photons:

- Some photons interact with electrons by Compton scattering
- Scattered photons get out of beam
- Remaining photons have almost same energy spectrum
- No change over depth in the energy and momentum distribution of the electrons from Compton scattering
- Therefore no change in lateral buildup situation in terms of dose
- Intrinsic penumbra unchanged
- Penumbra changes in depth mainly affected by source size and location.

Particles:

- Particles experiences MCS
- Each time deflected by a small angle, but the particle stays in the beam
- Effect of deflection accumulates.
- Particles spread out laterally. Gaussian flattens out
- Beam penumbra increases
- At the same time, particle energy decreases and deflection angle increases for each interaction.
- Beam penumbra increases faster near the end of beam range.

Lateral Penumbra Comparison

Photon (6 MV) vs Proton (Range 14 / Mod 10 cm)

Proton Penumbra Advantage

• Up to 18 cm ...

Elastic collision (large θ)

Nuclear interaction

- A certain fraction of protons have nuclear interactions in tissue (about 1% of all protons per cm of penetration)
- Mostly with oxygen and carbon nucleus
- Nuclear interactions cause a decrease in primary proton fluence
- Nuclear interactions lead to secondary particles and thus to local and non-local dose deposition (neutrons!)
- The dose from nuclear interactions is negligible in the Bragg peak

Spatial Distribution

Contribution in %

Nuclear interactions of heavy ions

Elastic nuclear collision (large θ)

Nuclear interaction (fragmentation)

Dose Contribution from Fragmentation

In-vivo Dose Verification with PET

- Protons and heavy ions cause nuclear fragmentation reactions
- Products include positron emitting isotopes (¹⁵O, ¹¹C)
- PET scan measures distribution of activities
- Activity distribution related to dose distribution

C A N C E R C E N T E R[™]

HARVARD

MEDICAL SCHOOL

Take Home Messages

- Heavy charged particles interact with matter very differently from photons
- The unique characteristics of the ionization process create the Bragg peak dose distribution
- Particle beams offer potential variation of biological effectiveness in depth (LET increase)
- Multiple Coulomb scattering causes broader lateral beam penumbra at deeper depth
- Heavy charge particles cause inelastic nuclear interactions and produce neutrons

