PTCOG 54: Proton Therapy for GU Cancer

Andrew K. Lee, MD, MPH

Medical Director
Texas Center for Proton Therapy

Disclosures

No relevant financial disclosures

This presentation will not discuss off-label or investigational treatments

PROSTATE CANCER

- Control organ motion/ radiologic path length
- Be accurate with CTV delineation
- Pencil beam for high-risk, nodes, postop

SEMINOMA

- Primary role for Stage I & II
- Define CTV <u>nodal</u> volumes + margins

BLADDER

- Intent? (e.g. bladder preservation vs. non-operative)
- Concurrent chemotherapy
- Avoid treating whole bladder to full dose

Prostate cancer proton therapy

Low risk
 Prostate only (PSPT)

78 GyE (2GyE) PTV...>80 GyE CTV

72 GyE (2.4 GyE)

55.5 GyE (3.7 GyE) on clinical trial

Intermediate risk Prostate & "proximal" SV

PSPT or **SSPT**

HT x 4-6 months for select pts

(2 mos TAB then leuprolide alone)

High risk & T3
 Prostate & most of SV (SSPT)

(Select pts LN)

HT x 2 years

Proton technique for Prostate Ca

- Supine
- ER Balloon w/ water (2 sizes: 80cc vs. 60cc) for most pts
- Bony <u>and</u> fiducial alignment
- 2-fields every day (opposed laterals)
- CTV = Prostate +/- portion of SV
- 2 CGE x 39 = 78 CGE to "PTV"
- Mean CTV dose ~81 CGE
- 2.4 CGE x 30 = 72 CGE to "PTV"

Types of seminal vesicle invasion: Type I direct invasion most common & worst prognosis

Ohori et al. Am J Surg Path, 1993

Estimating risk of SVI

- SVI is rare in modern era (~5%) for T1-2
- Risk based stratification (pT3b may be >30% in higher risk patients)
- Gleason score, PSA, T-stage, % (+) biopsies,
 MRI findings

- Updated Partin tables
- Kattan nomogram

CT vs. MRI This has implications for SV length

Distal SV vs. Something else

OPTIONS:

Decrease CTV...Not just superiorly but also laterally (remember type I SVI)

Decrease dose...Total dose or just SV followed by prostate boost

ERB...Does not always work....sometimes still have "droopy" SV

AVOID this regardless of how the rectal DVH looks

Half the rectum is getting 74Gy!!

ERB may help geometry

Planning parameters

Right & left lateral beams (daily)

Improved conformality

Potentially more forgiving and robust

Geometrically and biologically (RBE)

Trade off is patient throughout & inter-fraction motion

78 CGE (2 CGE/fxn) or 72 CGE (2.4 CGE) to CTV + margin Usually prescribe to 98-96% isodose line

Proximal and Distal Margins for <u>passive</u>-scattered planning

Setup uncertainty ≤ 5mm

Distal margin = (0.035 x distal CTV radiological depth) + (3mm)*

Proximal margin = same (~ 1cm)

Smear ~0.8-0.9 cm

*Beam range uncertainty

Lateral Margin

- LM = setup uncertainty + penumbra
- Setup uncertainty = 0.5cm
- 225-250 MeV beam penumbra (95-50%) = 1.0-1.2cm
- LM = 1.2-1.7 cm
- Tighter posteriorly

Two opposed lateral beams

Rectal DVH V70 <12%

Anterior rectal wall V70 < 40%

Dancing prostate & hips using vacuum bag

Range depends on <u>radiologic</u> path length

Fiducials vs. MRI show residual errors

Max prostate deformations after translational matching of fiducials: 6mm x-direction, 13mm in y, 7mm in z

[Nichol et al. IJROBP 67, 2007]

Gas-release double-ported ERB

Anterior groove helps in alignment

Sagittal and Coronal

Check ERB depth of insertion daily

Fiducial markers

Fiducial markers for protons

- Increases accuracy and faster than bony alignment
- Use lowest density material that is visible on kV imaging
- Implant markers ≥ 4-5 days before sim if possible
 - If < 4 days, consider verification CT 1st week of Rx
 - Two markers (base-apex) w/ ERB probably sufficient
 - Do NOT orient long axis of markers parallel to beam path
 - Do NOT overlap markers along beam path
- Investigate & correct large shifts between markers and/or bone!

Fiducial markers should form a triangle in each dimension around the isocenter if possible

Fiducial markers should be >2mm away from prostate capsule, urethra, SV.

Gold fiducial: CT numbers, Volume, Dose shadowing

Newhauser et al: Dose Perturbations from Au Cylinders

Calcification vs. Carbon-coated ZrO₂

IGRT carbon-coated ZrO₂

May need to collimate kV imager for better visibility

Translational shifts < 6mm and rotational shifts <5º do <p>NOT significantly impact CTV coverage

• UF-Vargas et al. IJROBP 71, 2008

NCC Korea-Yoon et al. IJROBP 71, 2008

MDACC- Sejpal et al. IJROBP 2010

Some men may not require ERB

Treating without ERB w/ fiducials

Patient anatomy: Posterior angulation of rectum, peri-prostatic/rectal fat

Patient compliance on rectal emptying (intervene if rectal gas on kV imaging)

Treating without ERB DVH Rectal V70 = 8% (light green)

Rank order for proton use in prostate Ca

- 1. Passive scattered
- 2. <u>Spot-scanning-SFUD</u>: Each field **comprehensively** covers target
- 3. <u>Spot-scanning w/ constraints</u>: SFUD w/ more inverse planning
- 4. <u>Multi-field optimized intensity modulated proton</u> therapy (MFO-IMPT): Most conformal but most complicated

SINGLE SSPT w/ SFUD Single field comprehensively covers target

Two opposed lateral fields

Passive

Spot-scanning (SFUD)

Some spots may be outside STV

SFUD w/ some constraints

SFUD for prostate cancer

- Typically for more advanced disease or challenging anatomy
- Cannot use classical distal & proximal margin formulas
- Use expanded volume to guide treatment planning:

Scanning Target Volume (STV)

Considers setup and range uncertainty

Proximal & Distal margin 12mm

Anterior 6mm, Sup-Inf 5mm, Posterior 4mm

- >96% STV and 100% CTV covered by prescription
- Typically prescribe to 97-98% isodose line
- If plan too heterogenous, consider increasing STV margins and prescribing to lower isodose

Late Toxicity PSPT vs IMPT (SFUD)

THIS IS BETTER THAN CURRENT **PROSPECTIVE** IMRT RESULTS

Treating pelvic lymph nodes

- Make sure you actually need to treat pelvic nodes
- Use adequate CTV (e.g. RTOG atlas)
- Spot scanning helps (conformal, faster)
- Choose beam arrangements that minimize radiologic path lengths and setup variability
- Construct STV accordingly
- Boost prostate w/ laterals
- Align to prostate...Do NOT under-dose prostate

Treating pelvic lymph nodes w/ protons

One option is 3 field technique
AP and two Posterior obliques
(Robust but slightly higher rectal dose)

Radiologic path length and setup is variable Therefore STV expansion is variable

L. Widesott et al. Int J Radiat Oncol Biol Phys 80, 2011

For laterals, depending upon range and TPS may have to split Rt & Lt nodal targets

Postop w/ SFUD Especially after Robotic-assisted LRP*

*RALRP tends to use plastic surgical clips

Postop w/ no ERB

Concomitant boost w/ SFUD:

Postop 66 GyE (red) to Prostate bed SV beds concurrently 60 GyE (blue)

Take home points

- Higher radiation doses yield higher PSA control rates
- Do not use too tight of a margin
- Proactively position the patient and target
 - Minimize inter- and intra-fraction variation
- Opposed lateral beams are relatively forgiving
- Do not treat more of seminal vesicles than needed

Radiation therapy for seminoma

Role of RT

- Adjuvant for stage I (para-aortics LN)
- Adjuvant for stage II (para-aortics + pelvis)

- Consolidative post-chemo
- Salvage after chemo
- Palliative

Define CTV (not just vessels) and margins

Therapy after orchiectomy

- Stage I
 - XRT (20 Gy) from ~T12-L5 (inclusive)
 - Observation (size, rete testis+, age)
 - Carboplatin
- Stage II
 - -XRT (20Gy \rightarrow 6-8 Gy boost)
 - Chemotherapy for bulky disease >5cm

AP/PA X-rays

Dose MAX: 2259.1 c Gy 2259.1 c Gy 3D Dose MAX: 2259.1 c Gy 3D MAX for ETV: 2178.8 c Gy 3D MIN for ETV: 1827.6 c Gy 3D MIN for ETV: 2071.6 c Gy 1500.0 c Gy 1000.0 c Gy 2259.9 1000 c Gy 1000.0 c Gy 1000.0 c Gy 1000.0 c Gy 1000.0 c Gy 2259.9 1000 c Gy 1000.0 c Gy 1000.0 c Gy

PA Protons

MDACC recommendations for stage IIA/B

- PA + Pelvic (inferior border @ acetabulum)
 - PA field: T12-L5 inclusive (include thoracic duct)

- 20 Gy to elective sites
- Boost gross disease w/ additional 6-8 Gy

I try to use protons instead of x-rays

RT field for CS IIA/B seminoma

Inferior border used to be midobturator foramen until Classen et al. J Clin Oncol 2003;21

**Int J Radiat Oncol Biol Phys 83(4); 2012

Posterior field for PA nodes

AP field for pelvic nodes Usually one junction shift w/ para-aortic field

Boost

Composite plan

Protons for Bladder Cancer

- In U.S., mostly transitional cell carcinoma
- Cystectomy +/- chemoRx most common Rx
 - Cystectomy is a big operation!
 - Overall survival similar to Chemo-RT

- Define intent of therapy
 - Bladder preservation
 - Non-surgical candidate
 - Palliative

Protons for Bladder Cancer

Defining target

 Primary advantage may be to spare normal bladder tissue for boost

- Daily bladder filling/position needs to be verified
- Potential role of volumetric imaging

Radiation for muscle invasive

- Ta non-invasive papillary tumor
- Tis In-situ ca (flat tumor, may extend)
- T1 Sub-epithelial connective tissue
- T2a Inner half of muscle layer
- T2b Outer half (deep muscle)
- T3a,b Perivesical fat (micro, macro)
- T4a,b Other adjacent structures

RTOG 89-03:

Bladder preservation 64.8 Gy + cisplatin

Fig 2. Arm 2 of RTOG 89-03 for the treatment of invasive bladder cancer with combined TURBT and concurrent chemotherapy and radiotherapy for attempted bladder preservation.

Maximal TURBT w/ Bladder map

CDDP + RT Low pelvis 39.6 Gy

After 4 weeks.. Evaluate response EUA, Cysto + bx, Cytology

If CR, then CDDP + 25.2Gy tumor

If <CR, then cystectomy

Long-term MGH experience [Urology 2002]

	<u>5 year</u>	10 year	
Actuarial OS	54%	36%	
DSS	63%	59%	
DSS w/ bladder	T2 57% T3-4 35%	T2 50% T3-4 24%	

Pelvic failure rate 8.4%

Not all relapses are muscle invasive!

Overall survival: T2 better than T3-4

Mid treatment re-evaluation for bladder preservation

- After ~40 Gy and 4 week break
- Examine under anesthesia
- Cystoscopy w/ tumor-site biopsy
- Urinary cytology

 If any of the above is positive, then cystectomy (unless non-CIS ≤ T1 disease)

Erlangen protocol

- Higher RT dose (45-50Gy) prior to re-evaluation
- Concurrent CDDP +/- 5-FU
- Dose depends upon level of TURBT
 - 45-50 Gy to slightly larger pelvic field
 - Immediate boost to entire bladder
 - **54Gy** for R0, **59.6Gy** for R1/2
 - Re-evaluation after 4-6 weeks
- Theoretical advantages to either technique
- Overall results similar

Traditional XRT technique

- Target is bladder w/ true pelvic LN's
- 4 field with higher energy preferred
- Small pelvic field (40-50Gy)

Boost field (64-70Gy)

Bladder mapping & examine under anesthesia

ATJENT NAME UNI	T#
CYSTOSCOPY DATE// SUF	RGEON
pecify location/origin of primary (at cysto or TURB)	
Asibly complete TURB?	Yes No
Palpable mass or indoration persists after TORB?	Yes No
mitial largest tumor (diameter): ≤1 cm 1.2-2.9 cm	1 3-4.9 cm ≥ 5 cm
Does tumor Invade prostate or vagina?	Yes No
is tumor fixed to pelvic/abdominal wall?	YesNo

Small pelvic fields-AP/PA

 Target is tumor, bladder, proximal urethra (male entire prostatic urethra) and first LN's (nodes below bifurcation of int-ext iliacs)

Superior Mid-SI (S2-S3 junction)*

Inferior Bottom obturator foramen

Lateral
 1.0 cm (1.5) on pelvic brim

Block femoral heads

MGH/RTOG Pelvic fields

*Spare small bowel for urinary diversion/reconstruction

UK BC 2001 trial

(James et al. NEJM 2012; 366)

- N=T2-4a bladder Ca (various histologies)
- Phase III 2x2 factorial design:

RT vs. RT + 5-FU/MMC

Whole bladder RT (+ 1.5 cm) vs. Bladder tumor (+2cm)

- RT dose either 55 Gy (20 fx) or 64 Gy (32 fx)
- No mid-Rx re-evaluation
- Primary endpoint was Loco-regional DFS
- RT + 5-FU/MMC did better than RT alone

Empty vs. Full bladder?

Depends...

Empty bladder allows for slightly smaller field
 & likely more reproducible but at potential cost of treating more small bowel

 Full bladder may be better for boost to spare some bladder mucosa

Location of tumor matters

- Good
 - Bladder neck
 - Lateral
 - Posterior
 - Anterior
- Bad
 - Dome
 - Anything near small bowel

Proton beam therapy for invasive bladder cancer...M. Hata et al.

- N=25 patients with TCC, T2-3 N0M0
 - TURBT
 - RT + intra-arterial MTX and CDDP
 - Re-evaluation w/ cysto + TURBT
 - IF CR, then proton boost
- 23/25 patients went onto proton boost
- 5y OS 60%

DFS 50%

CSS 80%

Proton bladder boost (AP and Lt lateral)

Int J Radiat Biol Phys 64, 2006

Bladder preservation

- GOOD Candidates
 - Unifocal w/ no CIS
 - -<5cm
 - Complete TURBT
 - Lower T (T2-3a)
 - No hydronephrosis
 - Complete response
 - 2 hour bladder
 - Will come for FU

- "BAD" Candidates
 - Multifocal or CIS
 - Incomplete TURBT
 - T3b-4
 - Hydronephrosis
 - Incomplete response
 - Tumors on dome are challenging

THANK YOU

Andrew.Lee@USOncology.com

TexasCenterForProtonTherapy.com