Development of Proton Therapy in GI Cancers

Theodore Hong, MD

Director, Gastrointestinal Radiation Oncology Massachusetts General Hospital Associate Professor of Radiation Oncology Harvard Medical School

CANCER CENTER

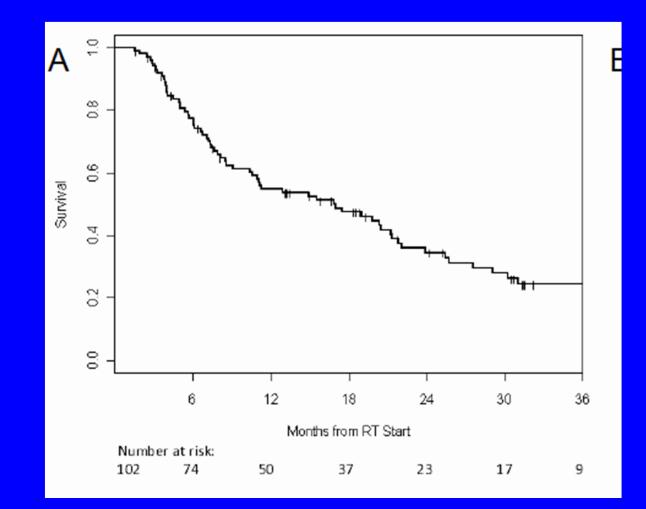
Disclosures

- No relevant financial disclosures to material in this presentation
- Research Funding- Novartis
- Advisory Board- Eisai

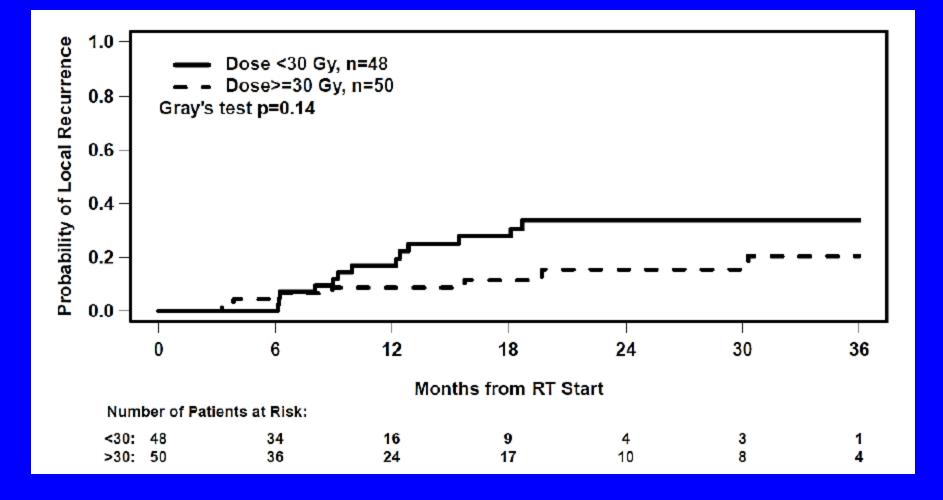
Why protons for gastrointestinal cancers?

- Disease sites where VOLUME irradiated is important for toxicity

 Liver
- Disease sites where there is a compelling reason for a shorter treatment course
 - Pancreas
- Diseases large volumes and high toxicity chemotherapy
 - Anal cancer
- Limited prospective clinical data


Protons and GI Sites

- Liver
- Pancreas
- Anal Canal


Photon (non-proton) radiation-PMH Ph II- HCC

- 6 fraction SBRT
- 102 patients
- Individualized dosing based on Veff
- High risk patients
 - 55% with portal vein thrombus
 - 61% with multiple lesions
 - − 52% CLIP ≥ 2

Local Control as a Function of Dose

Why Protons for Liver Tumors?

 Table 1 The Estimated 5% RILD for Uniform Irradiation of One Third, Two Thirds, and the Whole Liver From Different Publications

 (in 1.5 Gy bid equivalent dose unless otherwise stated)

Reference, Year	No. Patients With RILD	Total	NTCP Model	1/3 Liver	5% Risk of RILD 2/3 Liver	Whole Liver
9, 1986	1	11	None	35 Gy [†]	NA	NA
2, 1991	27*	407*	None	50 Gy [‡]	35 Gy [‡]	30 Gy‡
22, 1991	27*	407*	Lyman	43 Gy [‡]	34 Gy [‡]	30 Gy [‡]
9, 1992	9	79	Lyman	72 Gy§	45 Gy	35 Ġy
27, 1995	9	93	D-I	No limit	52 Gy	35 Gy
28, 2001	19	183	Lyman	90 Gy [§]	47 Gy	31 Gy
28, 2001	19	183	D-I	99 Gy§	43 Gy	32 Gy
28, 2001	19	183	Mean dose	_ `	_ ´	31 Gy
Liver metastases						
11, 2002	3	85	Lyman	107 Gy [§]	54 Gy	37 Gy
23, 2004	3	85	Mean dose	_ `	_ /	37 Gy
Primary liver cancer						
11, 2002	11	84	Lyman	93 Gy [§]	47 Gy	32 Gy
23, 2004	11	84	Mean dose	_ `	_ ´	32 Gy

Dawson LA, et al. Semin Radiat Oncol 2005;15:279-283

HCC: Clinical Data

- Efficacy
- Bridge to transplant
- Central tumors/venous thrombosis

Tsukuba Proton Liver Historical Experience

- Treatments
 - 165 patients
 - 192 tumors
 - Median dose 72 Gy
 - Median dose/fraction 4.5 Gy
- Outcomes
 - LC-5 86.9%
 - OS-5 23.5%
- Toxicity
 - 5 pts with Gr 2 or greater late sequelae
 - 2 Mucosal Ulceration
 - No RILD

Tsukuba Prospective Experience

• 51 pts

- > 2 cm from porta hepatis
- 66 GyE in 10 fractions
- 45 pts < 5 cm in diameter
- 80% Child's A, 20% Child's B
- 33 pts had prior treatment (TACE, RFA, Surgery)

Fukumitsu, et al. IJROBP 2009.

Outcomes

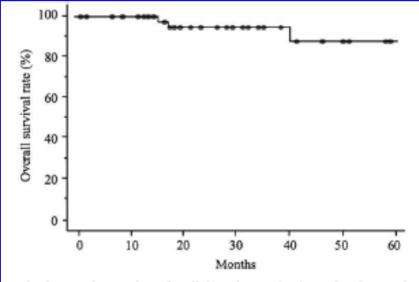


Fig. 2. Local control rate for all 51 patients. The 5-year local control rate was 87.8%.

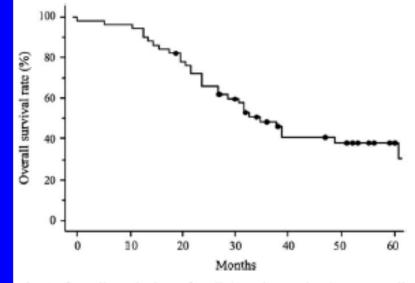
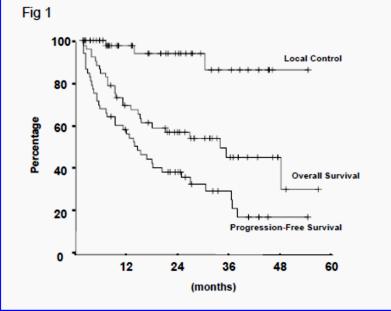


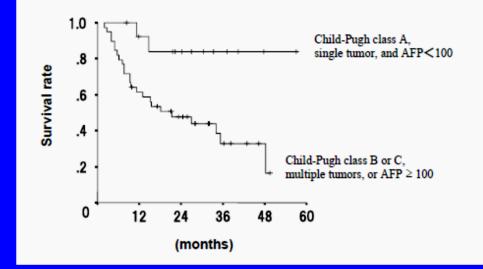
Fig. 1. Overall survival rate for all 51 patients. The 5-year overall survival rate was 38.7%.

Local Control Overall Survival

Loma Linda – Proton therapy as bridge to transplant

- 76 patients
- Mean tumor size 5.5 cm
- 63 GyE in 15 fractions
- 18 pts transplanted- 6 had pCR
- mPFS 36 mo
- PFS-3 for pts in Milan criteria 60%


Bush et al. Cancer 2011


Central HCC

- 53 patients
- Tumors within 2 cm of porta hepatis
- 28% vascular invasion
- Tumor 5-10 cm in size 18 (34%)
- Tumors >10 cm 4 (8%)
- 66 Gy in 22 fractions

Mizumoto, et al. IJROBP 2009.

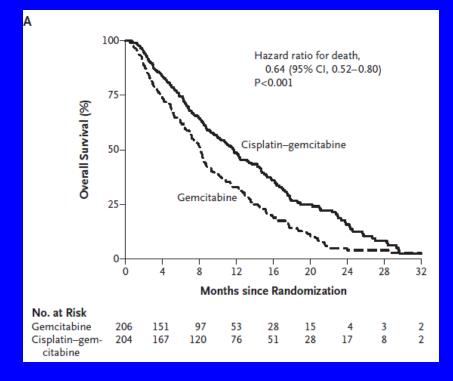
Outcomes with central tumors

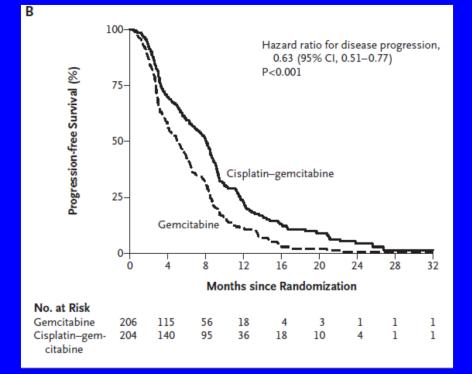
Protons vs. Photons for Unresectable, Liver Confined HCC

Hypothesis:

- Protons will result in superior local control compared to photons
- Rationale
 - Protons may allow for higher radiation dosing in an individualized, Veff based dosing strategy
 - Prospective Phase II study of photons for HCC from PMH shows dose-response relationship for local control
 - Tumor vascular thrombus may be harder to treat with passively scattered protons, but may be feasible with pencil-beam scanning protons
- STRATIFY Number of fractions (determined by treating physician) 5 or 15 Radiation Therapy Individualized Dosing Radiation Therapy (photons)
 - Individualized Dosing

Endpoints


Schema


- Primary- Local Control
- Secondary
 - PFS
 - OS
 - Toxicity
 - Exploratory evaluation of tissue/blood based biomarkers for disease control/liver toxicity

Intrahepatic cholangiocarcinoma

- Standard of care for unresectable cholangiocarcinoma is chemotherapy
- Gem/cis chemotherapy per ABC-2
- Protons have been associated with high rates of local control in HCC
- Can protons lead to long term local control, and thus survival in intrahepatic cholangiocarcinoma (ICC)?

Chemotherapy for Cholangiocarcinoma ABC 2

PFS

Valle J, et al. N Engl J Med 2010;362;1273-81

OS

Design

- Multicenter, single arm ph II study (MGH/MDACC/UPenn)
- Sample size calculated to demonstrate >80% LC at 2 yrs
- Eligibility
 - No cirrhosis or Child's A/B
 - ECOG PS 0-2
 - No extrahepatic disease
 - No Prior RT
 - Max tumor size 12 cm

Hong TS, et al. ASCO 2015

Treatment

- 15 Fractions
- Peripheral 67.5 Gy
- Central (within 2 cm porta hepatis) 58 Gy

Results

- 43 patients
 41 ICC, 2 mixed HCC/ICC
- 4 did not receive treatment
 - 3 could not meet dosing constraints
 - 1 became ineligible due to ECOG
 - Median longest tumor diameter (N=3):
 - 6.9 cm (range 4.4 9.0 cm)

Results

- 39 analyzed
 - 37 ICC, 2 mixed HCC/ICC
 - Median age 66 years (range 29-87 years)
 - Cirrhosis
 - None- 1 (3%)
 - Childs A 34 (87%)
 - Childs B 4 (10%)
 - Prior systemic therapy 24 pts (62%)
 - Number of tumors
 - 1 lesion 33 (85%)
 - 2 lesions 4 (10%)
 - 3 lesions 2 (5%)

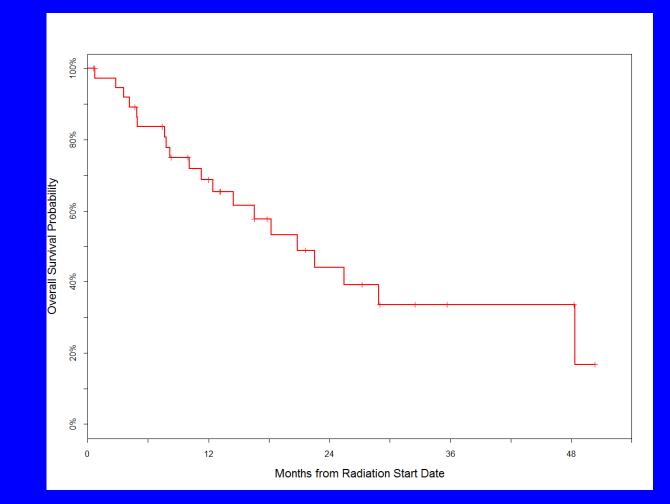
Results

Variable	Minimum	Median	Maximum
Longest tumor dimension (cm)	2.2	5.8	10.9
CA 19-9 at baseline (u/mL)	0	72	10,549
Dose prescribed (Gy)	45	58	67.5
Dose received (Gy)	15.1	58	67.5

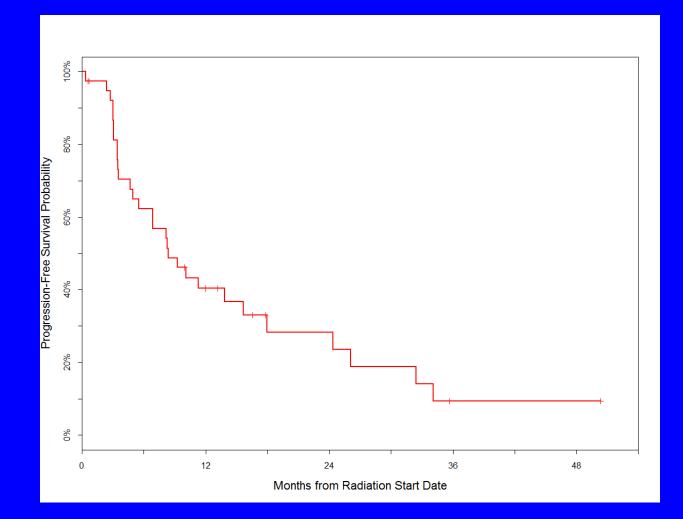
Gr 3 Radiation-Related Toxicity 3 pts (8%)

- Hyperbilirubinemia 1 pt
- Stomach ulcer 1 pt
- Liver failure 1 pt
- Ascites 1 pt

1 patient had both liver failure and ascites.


No grade 4 radiation-related toxicities.

Outcomes


Median follow up duration among 19 survivors: 13.2 months (range 0.6 – 50.4 months)

Endpoint	1-year	2-year
Local Control	97%	90%
Overall Survival	69%	44%
Progression-Free Survival	40%	28%

OS – All Treated Subjects n=39

PFS – All Treated Subjects n=39

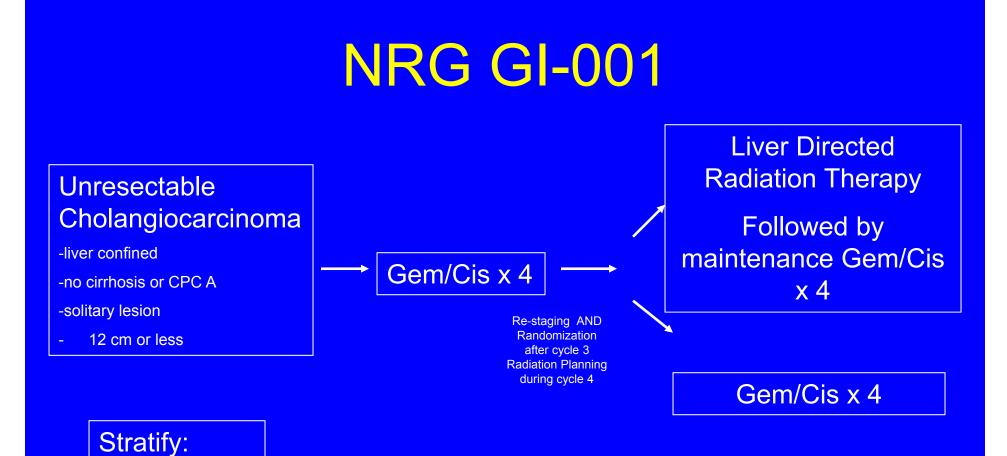
PFS status

Site of First Progression	Ν	%
Local only	5	12.8%
Local + hematogenous	1	2.6%
Hematogenous	19	48.7%
Death, no progression	4	10.3%
Alive, no progression	10	25.6%

Predictors of Local Control

Variable	Level	Ν	Median Time to Local Failure (months)	Log-Rank Test P-value	-
Size of longest tumor	<6 cm	21	32.4	0.9561	t r
diameter	≥6 cm	18	30.1		
CLIP score	0-1	33	32.4	0.8259	
	2+	5			
Tumor vascular thrombosis	No	28	34.1	0.0873	
	Yes	11			
Prior chemotherapy	No	15		0.1288	
	Yes	24	26.1		
CA 19-9	<72 u/mL	18	34.1	0.7751	
	≥72 u/mL	19	32.4		
Dose Prescribed	<58 Gy	9		0.4927	
	≥58 Gy	30	32.4		
Dose Received	<58 Gy	11		0.4927	
	≥58 Gy	28	32.4		

-- Median time not reached

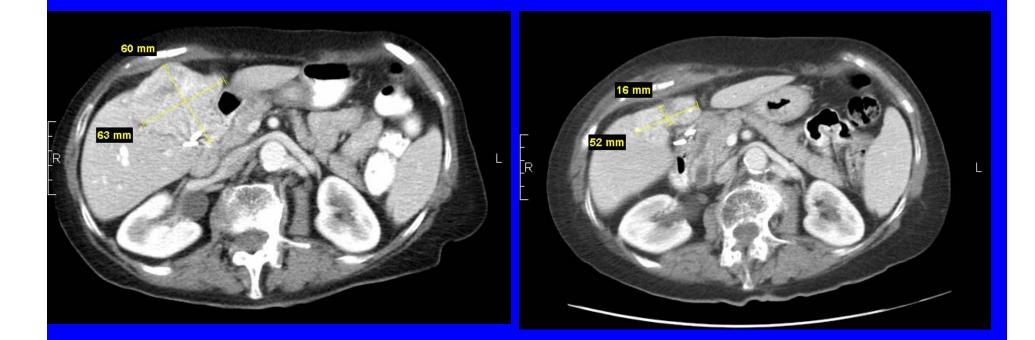

Predictors of OS

Variable	Level	Ν	Median Overall Survival (months)	Log- Rank Test P-value
Size of longest tumor	<6 cm	21	25.5	0.2169
diameter	≥6 cm	18	14.5	
CLIP score	0-1	33	18.2	0.1979
	2+	5		
Tumor vascular thrombosis	No	28	28.9	0.0022
	Yes	11	14.5	
Prior chemotherapy	No	15	25.5	0.7255
	Yes	24	20.8	
CA 19-9	<72 u/mL	18	28.9	0.2337
	≥72 u/mL	19	12.4	
Dose Prescribed	<58 Gy	9	25.5	0.5424
	≥58 Gy	30	20.8	
Dose Received	<58 Gy	11	14.5	0.9154
	≥58 Gy	28	20.8	

-- Median time not reached

Conclusions

- High dose, hypofractionated radiation (with protons) is associated with high rates of local control in ICC
- Radiation is safe
- Long term survival is possible
- These data form the foundation for NRG GI-001


-Largest tumor > 6

-Nodal involvement

cm

Maintenance gemcitabine allowed at physician's discretion

Pre/Post Radiation 58.05 Gy

Liver Metastases

- Phase II of stereotactic protons or photons
- 5 fractions over 2 weeks
 - Veff<0.22 50 Gy
 - Veff 0.22-0.51- 40 Gy
 - Veff > 0.51- 30 Gy
- Endpoint- LC-1 >75%
- Outcomes will be presented at ASTRO 2015

Protons and Preoperative Therapy for Pancreas Cancer

- Can we challenge conventional paradigm of radiation fractionation
- If we can render local control in 1 weekmakes decision to use RT less controversial

The Controversy of Radiation and Resectable Pancreatic Cancer

- Local Failure is a problem after surgery alone
- Early randomized trials showed a benefit to chemoradiation
- One controversial trial did not
- One chemotherapy alone trial showed a benefit to gemcitabine
- Standard chemoradiation is associated with significant toxicity, takes 6 weeks

Advantages of Short Course

- It works (rectal data)
- Cost-effective
- Less delay to surgery Is it feasible in the pancreas?

	£	-1:-			Technical Charges	CPT	3D-CRT 50.4 Gy	IMRT 50.4 Gy	Proton 25 Gy
Hypo-	B IT-		nai	lon	CT guidance	76370	1	1	1
					Simulation: simp	77280	1	1	1
Professional	СРТ	3D-CRT 50.4Gy	IMRT 50.4 Gy	Proton 25 Gy	Simulation: 3D	77295	1		1
Charges	77070	1	50.4 Gy	23 Gy	Dosimetry calcs	77300	7	9	2
Clinical plan	77263	1	1	1	IMRT plan	77301		1	
IMRT Plan	77301		1		Plan: complex	77315	1		
Simulation: simple	77280	l	1	1	Device: simple	77332			1
Simulation: 3D	77295	1		1	Device:	77334	6	9	4
Dosimetry calc	77300	7	9	2	complex				
Plan complex	77315	1			Physics consult	77336	5	6	1
Device simple	77332			1	Treatment γ	77414	28		
Device complex	77334	6	9	4	IMRT treatment	77418		28	
Weekly mngmt	77427	6	6	1	Port film	77417	5	5	1
Special	77470		1		Special proc	77470		1	
procedure					Treatment:p	77523			5
Consult: comps	99245	1	1	1	Consult: comp	99245	1	1	1
Total Prof.		\$ <mark>2,600</mark>	\$3,100	\$1,200	Total Technical		\$7,500	\$13,700	\$8,000

Overall Cost

\$9,200

\$16,700

\$10,000

Differentiate between cost to institution and cost to patient!

PHYSICS CONTRIBUTION

DOSIMETRIC FEASIBILITY OF HYPOFRACTIONATED PROTON RADIOTHERAPY FOR NEOADJUVANT PANCREATIC CANCER TREATMENT

KEVIN R. KOZAK, M.D., PH.D.,* LISA A. KACHNIC, M.D.,*[†] JUDITH ADAMS, C.M.D.,* ELIZABETH M. CROWLEY, M.S.,* BRIAN M. ALEXANDER, M.D.,* HARVEY J. MAMON, M.D., PH.D.,[‡] CARLOS FERNANDEZ-DEL CASTILLO, M.D.,[§] DAVID P. RYAN, M.D.,[∥] THOMAS F. DELANEY, M.D.,* AND THEODORE S. HONG, M.D.*

Departments of *Radiation Oncology, [§]Surgical Oncology, and ^{||}Medical Oncology, Massachusetts General Hospital, Boston, MA; [†]Department of Radiation Oncology, Boston Medical Center, Boston, MA; and [‡]Department of Radiation Oncology, Dana-Farber/Brigham and Women's Hospital, Boston, MA

CLINICAL INVESTIGATION

PHASE I STUDY OF PREOPERATIVE SHORT-COURSE CHEMORADIATION WITH PROTON BEAM THERAPY AND CAPECITABINE FOR RESECTABLE PANCREATIC DUCTAL ADENOCARCINOMA OF THE HEAD

Theodore S. Hong, M.D.,* David P. Ryan, M.D.,[†] Lawrence S. Blaszkowsky, M.D.,[†] Harvey J. Mamon, M.D., Ph.D.,[‡] Eunice L. Kwak, M.D., Ph.D.,[†] Mari Mino-Kenudson, M.D.,[§] Judith Adams, C.M.D.,* Beow Yeap, Sc.D.,[†] Barbara Winrich, M.A.,* Thomas F. DeLaney, M.D.,* and Carlos Fernandez-Del Castillo, M.D.^{||}

Departments of *Radiation Oncology, [†]Medical Oncology, [§]Pathology, and Surgery, ^{II} Massachusetts General Hospital, Harvard Medical School, Boston, MA; and [‡]Department of Radiation Oncology, Brigham and Womens' Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

Phase I study of preoperative short course chemoradiation with early surgery

- Pancreatic head/neck adenocarcinoma
- Deemed resectable by surgeon
 - No SMA/Celiac involvement
 - Venous involvement allowed at discretion of surgeon
- Negative metastatic work up
 - -CTC/A/P
 - Diagnostic Laparoscopy

Treatment Regimen

- Proton beam radiation for 5 fractions
- 2 weeks of concurrent capecitabine 825 mg/m2 BID
- Dose level 1-3: Surgery 4-6 weeks after therapy
- Dose level 4: Surgery 1-3 weeks after therapy
- 3 patients at dose levels 1-3, 6 at dose level 4

Phase I Dose Escalation Schema

Dose Escalation Schema

Dose	Step 1	Dose/fraction	#	Fractionation	Total	Week 1	Week 2	Total Days
Level	Lead-in		Tx	Schedule	Dose	Schedule	Schedule	
	Phase							
1	1	3 GyE	10	QD	30	M T W Th Fri	M T W Th Fri	12
	Step 2	Dose/fraction	#	Fractionation	Total	Week 1	Week 2	Total Days
			Tx	Schedule	Dose	Schedule	Schedule	
2	1	5 GyE	5	QD	25	M W F	T Th	11
3	2	5 GyE	5	QD	25	M T Th Fri	М	9
4	3	5 GyE	5	QD	25	M T W Th Fri	-	5

Hong TS, et al. IJROBP, 2014

Adjuvant chemotherapy

Gemcitabine x 6 cycles

Correlative Studies

- Mutational Status- MGH SNaPShot

 KRAS, BRAF, NRAS, PIK3CA, CTNNB1, PTEN, TP53, IDH1, FLT3, JAK1, FLT3, EGFR, KIT, NOTCH1
- SMAD4 Status
- Circulating biomarkers

Screening and Enrollment

- 57 patients screened
- 50 patients enrolled*
- 49 patients (29 patients at MTD) eligible for analysis
 - -2 patients found to have a distal cholangiocarcinoma
- 7 patients found to have positive laparoscopy (gross metastases or positive cytology)- 12%

Patient Characteristics

Table 1	. Patient	Characteristics	(N=50)	patients)	

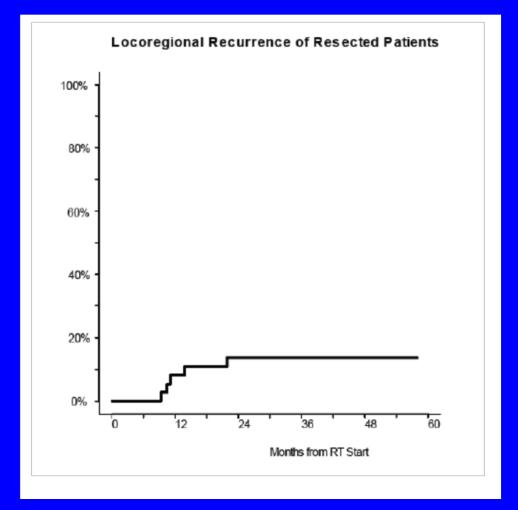
Gender			
Female	N=23	(46%)	
Male	N=27	(54%)	
Age, years			
Median	68	5	
Range	49-92		
CA19-9 at baseline			
Median	136	6.5	
Range	0-15,	151	
Tumor size on abdominal/pelvic CT			
Median	2.9 cm		
Range	1.1-	4.3	

Toxicity- Grade 2 or worse

 Table 2. Preoperative chemoradiation-related toxicity, grade 2 or worse (N=35 phase II patients)

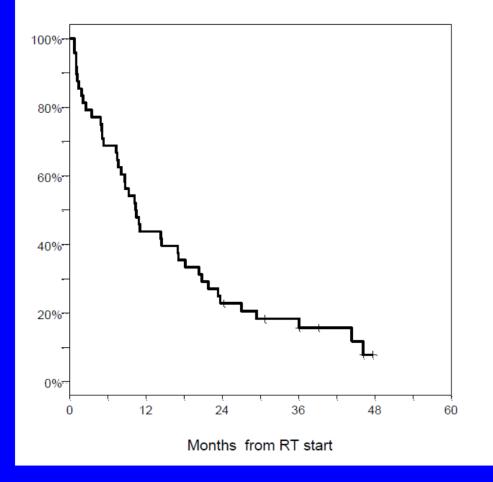
Toxicity	Grade 2 N (%)	Grade 3 N (%)
Colitis	0	1 (3%)
Nausea & Vomiting	3 (9%)	0
Constipation	1 (3%)	0
Dehydration	1 (3%)	0
Diarrhea, no prior colostomy	1 (3%)	0
Flatulence	1 (3%)	0
Chest wall pain	0	1 (3%)
Abdominal pain	1 (3%)	0
Limb pain	1 (3%)	0
Weight loss	2 (6%)	0

Resection Rate

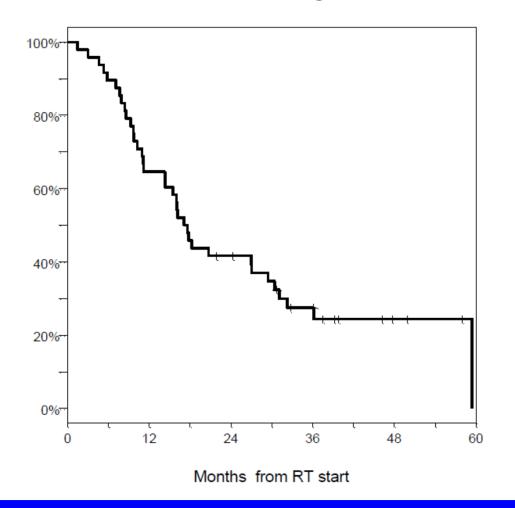

- 38/48 underwent resection
- 10/48 did not
 - Metastasis at exploration- 9
 - Unresectable tumor- 1

Pathologic Response

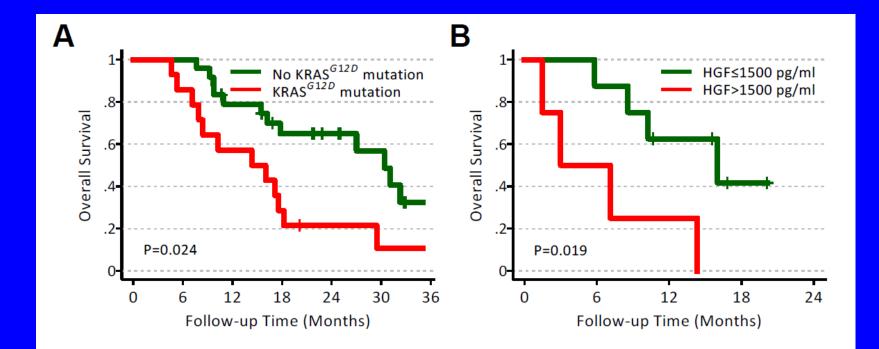
Table 3. Pathologic Response


Primary tumor (N=37 eligible resected patients)					
Tumor size					
Median	2.9 cm				
Range	1.3-4.8				
Histologic grade					
Moderate differentiation	17 (46%)				
Poor differentiation	20 (54%)				
Margin status					
Negative	31 (84%)				
Positive	6 (16%)				
Nodal Involvement					
No	7 (19%)				
Yes	30 (81%)				

Local Recurrence

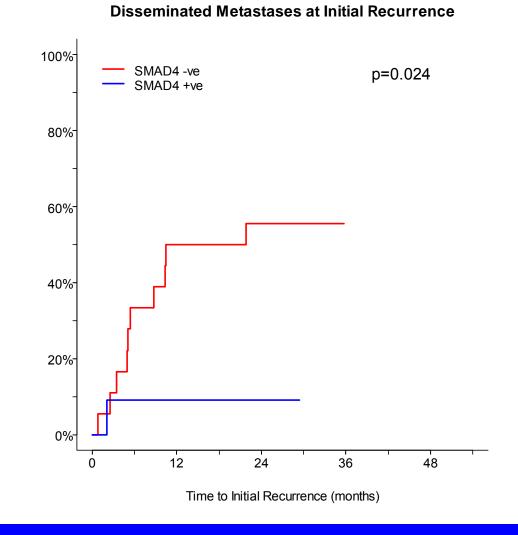

PFS

Progression-free Survival of Eligible Patients


OS

Overall Survival of Eligible Patients

MS- All patients- 17 mo MS- Resected patients- 27.7 mo


OS by Genotype and Serum HGF

Outcomes by circulating biomarkers

Biomarker/	Pre-tre	atment	Post-treatment		Change post-treatment		
Time- point	OS	PFS	OS	PFS	OS	PFS	
Plasma HGF	5.56 [1.26,24.64] n=12	2.57 [0.73,9.11] n=12	10.12 [0.74,138.3] n=12	2.53 [1.03,6.21] n=12	78.72 [0.69,9022] n=12	8.70 [0.66,114.3] n=12	
P value	0.0057	0.13	0.0002	0.015	0.0073	0.033	
Plasma TNF- α	3.72 [0.84,16.46] n=12	3.87 [0.92,16.26] n=12	1.86 [0.95,3.65] n=12	3.28 [1.11,9.64] n=12	1.95 [0.59,6.41] n=12	4.53 [0.51,39.88] n=12	
P value	0.071	0.054	0.048	0.0074	0.23	0.052	
Serum CEA	1.43 [1.08,1.90] n=43	1.34 [1.02,1.76] n=43	2.02 [1.36,3.01] n=12	2.12 [1.37,3.29] n=23			
P value	0.021	0.034	0.0001	0.0002			
Serum CA19-9	1.21 [1.04,1.41] n=45	1.13 [0.97,1.31] n=45	1.20 [1.06,1.38] n=42	1.20 [1.04,1.38] n=42			
P value	0.014	0.12	0.0057	0.014			

Patterns of Failure by SMAD4 status

Conclusion

- Short course proton-based chemoradiation followed by early surgery is feasible and appears safe
- Local control is encouraging
- Survival remains driven by systemic progression
- Exploratory analysis shows prognostic impact of KRAS G12D and circulating HGF
- Confirms SMAD4 as a marker of patterns of failure

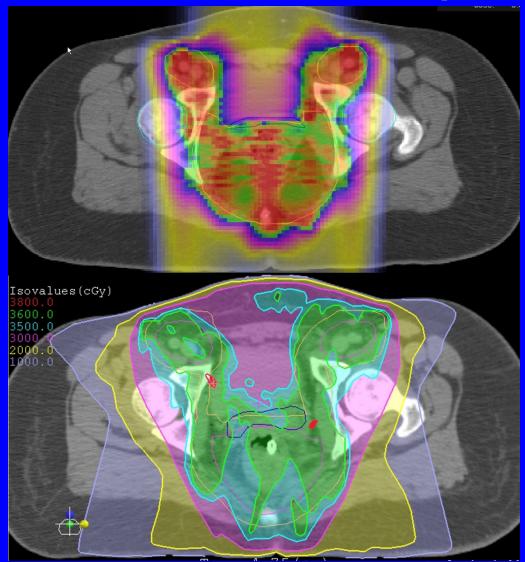
Pancreas and Protons

- Short course preop for resectable disease is feasible
- Have not pushed SBRT because protons don't address duodenal toxicity issues and limitations of imaging (Arvold et al, Int J Radiat Oncol Biol Phys 2011;80:1383-90)
- Currently is the platform of our pancreatic cancer program

Ongoing Protocols

Resectable

- Short course protons with hydroxychloroquine
- Gem/nab-paclitaxel vs. FOLFIRINOX followed by short course protons and surgery


Borderline resectable

- FOLFIRINOX x 8 followed by short course protons and surgery
- Locally advanced
 - FOLFIRINOX/losartan followed by dosepainted short course protons

Anal Cancer Pencil Beam Scanning

- 20 patients
- Feasibility/QOL study

Anal Nodes p PBS v IMRT

- PBS: AP + PA Fields
 - ~10 mm spot (1 σ)
 - ~ ~3,000 spots
 - Automated planning (computation time ~20 min)
 - IMRT: 7 Fields
 - IMRT is not well suited to this problem
- Dose

- Genitals constrained by minimum CTV dose of 35Gy(RBE)
- PBS dose (obviously) conforms better. Inhomogeneity is set by constraint of CTV dose between 35 and 42 Gy (RBE).

Conclusions

- Protons unequivocally provide improved dosimetry
- Clinical benefit remains unproven
- Allows for novel fractionation schedules that clinically make more sense
 - Also consistent with the surgical model of "center of excellence"
- Future directions should acknowledge the limited resource and high cost of facility
- May be a platform to develop proof of concept before transitioning to standard photon therapy

Acknowledgements

Proton Center

- Tom Delaney, MD
- Jennifer Wo, MD
- Jay Loeffler, MD
- Thomas Bortfeld, PhD
- John Wolfgang, PhD
- Judy Adams, CMD
- Radiology
 - Ronald Arellano, MD
- BWH/DFCI Rad/Onc
 - Harvey Mamon, MD, PhD
- Translational
 - Dan Duda, DMD, PhD
 - Darrell Borger, PhD
 - John lafrate, PhD

- Surgery
 - Carlos Fernandez-del Castillo, MD
 - Keith Lillemoe, MD
 - Cristina Ferrone, MD
 - John Mullen, MD
 - Sam Yoon, MD
- Medical Oncology
 - David Ryan, MD
 - Larry Blaszkowsky, MD
 - Eunice Kwak, MD,PhD
 - Andrew Zhu, MD, PhD
 - Janet Murphy, MD, MPH