PTCOG 54 Educational Session

Facility Selection

Huan Giap, MD, Ph.D Scripps Proton Therapy Center

May 20th, 2015

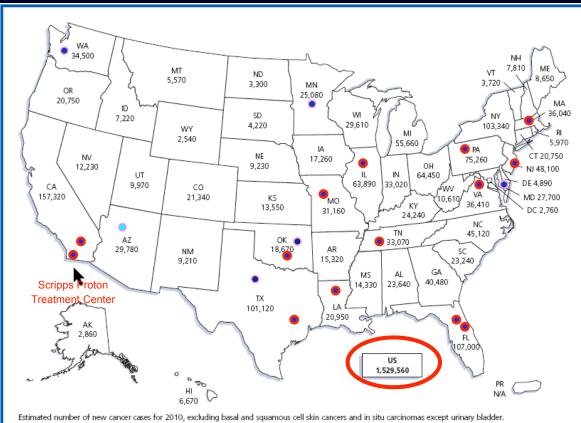
Disclosure:

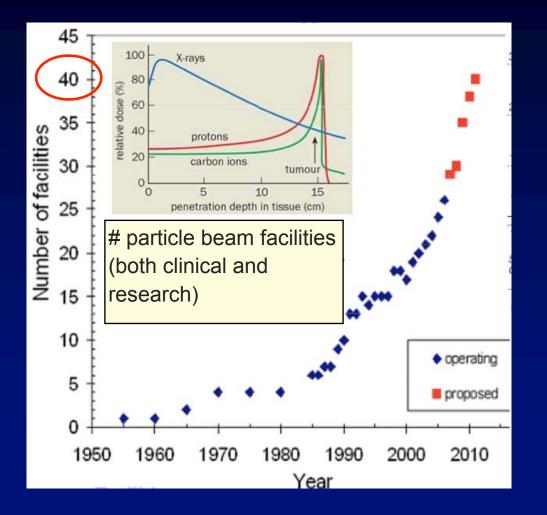
None

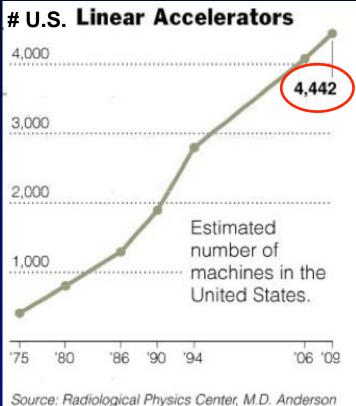
Acknowledgement

Jeff Bordok John Mishalanie Jim Thomson Lei Dong, PhD Carl Rossi, MD

Radiotherapy Menu


- External Beam Radiotherapy (EBRT)
 - "2-D" radiotherapy
 - <u>3</u>-<u>D</u>imensional <u>C</u>onformal <u>R</u>adiation <u>T</u>herapy (3DCRT)
 - <u>Intensity</u> <u>M</u>odulated <u>R</u>adiation <u>T</u>herapy (IMRT)
 - <u>I</u>mage-<u>G</u>uided <u>R</u>adiation <u>T</u>herapy (IGRT)
 - Stereotactic Radiosurgery, Stereotactic Body Radiation Therapy (Cyberknife, Gammaknife, Novalis, Tomotherapy)
 - Charged Particle Beam Radiotherapy: (Proton, Carbon)
- Brachytherapy
 - Permanent Seeds (LDR)
 - <u>H</u>igh <u>D</u>ose <u>R</u>ate (HDR)
 - Radio-embolization with Yttrium-90 microspheres
- Systemic radionuclide
 - Radiolabeled antibodies (Zevalin, Bexxar)
 - Radionuclide (I-131, Samarium-153, Strontium-89)




U.S. Cancer Facts 2012 (1.5 millions new cases, 570K deaths)

Note: State estimates are offered as a rough guide and should be interpreted with caution. State estimates may not add to US total due to rounding.

Number of particle beam centers vs # Linac (< 1%)

Cancer Center, University of Texas

Hospital Exec

a particle beam center ??

> my dream comes true...

Of

course !

Physician

Key Factors for Start-up

- Location
- Clinical partnership
- Institutional partnership
- Technology partnership
- Financial partnership
- Project management team

Practical aspects for starting a new particle beam center

- Pre-operation market evaluation
- Business planning (Pro forma)
- Securing financial partners/investors
- Selecting technology partners
- Architecture design and building
- Project management team
- Clinical/technical training
- Negotiation with insurance
- Promoting the center locally, nationally, and internationally

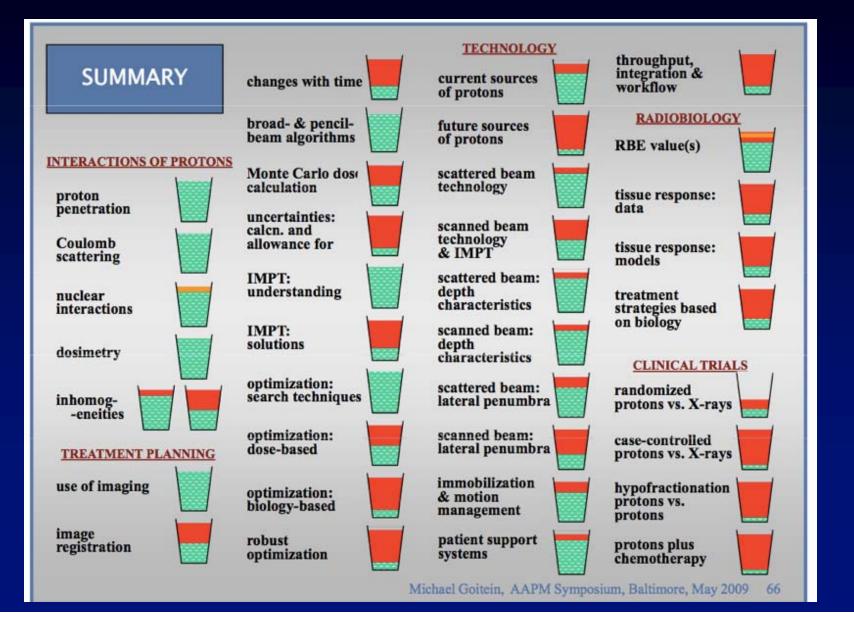
Benefits of the particle beam center ("Halo Effects") Hospital Executive Perspective (\$)

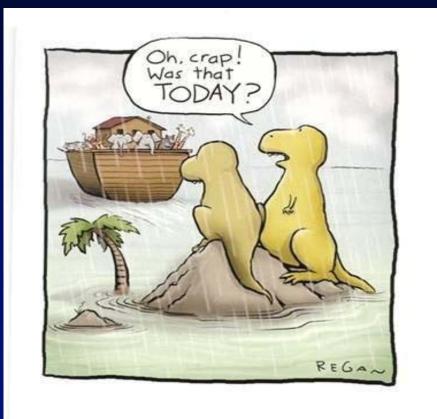
- Fall-out services to non-Radiation Oncology services: med onc, surgery, diagnostic radiology, etc.
- Non-proton radiation treatments for those who are not candidate for proton.
- Research opportunities, grants, etc.
- Philanthropic donations
- Better recognition in academia
- Better insurance contract negotiation
- Better edge against other hospital competitors

Why particle beam ? Clinician perspectives

- Provide better cancer care to patients
- Particle beam is an excellent complement to other cancer treatments (radiation, surgery, systemic)
- Advance in research and education

Need for Improved Local Control in Cancer Treatment (Over 1,500,000 new cancer patients per year in the US, about ~50% receive XRT)


(Tumor Site	Cox and Smith, MDACC Deaths/ year	Deaths due to Local Failure					
Head/Neck	22,000	13,200 (60%)					
Gastrointestinal	135,000	54,000 (40%)					
Gynecologic	28,000	14,000 (50%)					
Genitourinary	55,000	27,500 (50%)					
Lung	160,000	40,000 (25%)					
Breast	41,000	4,920 (12%)					
Lymphoma	20,000	2,400 (12%)					
Skin, Bone, Soft Tissue	2 15,000	5,000 (33%)					
Brain	12,000	10,800 (90%)					
Tota	al 488,000	171,820 (35%)					
All numbers are estima	are estimates. (Data are from Drs. James Cox and Al Smith)						


Why particle beam ? Physicists' perspectives

- My work will never end (my family will never see me, I will be employed until my next life,..)
- Oh yeh, I get to use all my physics training

Physicist Perspectives (Source: Michael Goitein, AAPM Symposium 2009, Baltimore)

"So, you really want to start a particle beam center ?"

Pitfalls for New Center Start-up

- Incorrect market analysis (pro forma)
- ✓ Inadequate patient numbers reimbursement
- Lack of support from institutional leaders
- ✓ Lack of clinical/technical staff buy-in.

- Not enough budget/manpower for pre-operation and ramp-up period
- Not able to obtaining funds and financing for equipments/land/buildings
- Choosing the wrong equipment vendors
- Inexperienced architecture/builders
- ✓ Inadequate clinical training

10-Step Process

1) Strategic planning: identify a project in certain geographic location by investors/all partners

2) Feasibility study: analyzing the local-regional patient need, current competitors, and multiple factors

3) Develop the business plan (Pro Forma)

4) Create a Special Purpose Company (SPC) to define the business partnership for the project.

- 5) Secure financing debt/equity
- 6) Architecture design/planning and obtaining all permits
- 7) Construction of the project Project management.
- 8) Acquisition and installation of the equipments, IT and software
- 9) Staffing planning and training. Setting up procedures and operation guidelines.
- 10) Market the center and networking with local regional healthcare providers and insurers.

Market Analysis – Simple Example

- 5 states: Nevada, Utah, Arizona, Idaho, Oregon, Colorado
- There are 100,000 cancer cases per year in these states
- 50% of these needs radiation = 50,000
- 20% of these benefits from proton = 10,000 patients
- 20% of these patients will have insurance that will approve for proton therapy
- A 5-room center can treat about 2000 patients per year
- A break even point is about 1000 -1200 patients per year

Disease Site Suitable for Proton = 20%

Data from MGH (Massachusetts General Hospital), Cox (M.D. Anderson Cancer Center), and SPTC (Sasaki Taro memorial PIXE Center in Japan)

Disease	MGH	cox	^{SP} C	^{Avg Sui}
Digestive System	15.6%	50.0%	10.1%	25.2%
Respiratory System	14.6%	50.0%	12.5%	25.7%
Breast	0.0%	15.0%	4.8%	6.6%
Male Genital System	28.7%	80.0%	3.8%	37.5%
Female Genital System	11.5%	25.0%	1.9%	12.8%
Lymphomas	0.0%	10.0%	2.0%	4.0%
Leukemias	0.0%	0.0%		0.0%
Skin excl Basal & Squamous	0.0%	0.0%		0.0%
Urinary System	37.2%	10.0%		23.6%
Oral Cavity	15.0%	15.0%		15.0%
III Defined and Unspecified	15.0%	15.0%	23.3%	17.8%
Brain & Nervous System	79.8%	80.0%	18.2%	59.3%
Endocrine System	0.0%	10.0%		5.0%
Soft Tissues	0.0%	10.0%	10.7%	6.9%
Multiple Myeloma	0.0%	5.0%		2.5%
Bones & Joints	0.0%	10.0%	76.7%	28.9%
Eye & Orbit	92.3%	95.0%	20.0%	69.1%
ENT			30.0%	30.0%
Average Suitability	18.2%	28.2%	17.8%	20.6%

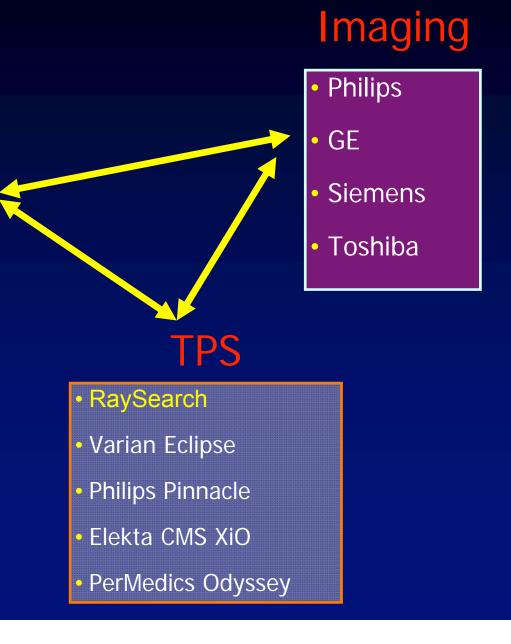
Proton Cancer Center Budget

	Items	% cost
Proton equipment	(Cyclotron, 5 rooms (gantries + fix-beam)	40-50%
Building/Construction/ Architect	xxx sqft @ xxx/m2	20-25%
Pre-operation and ramp-up, marketing	staffs (MD, physics, RTT, admin, etc)	10%
Diagnostic equipment	MRI, CT scan, PET/CT	5-10%
Conventional XRT	xxx Linacs	
Soft cost	Permits, Consultants, Legal, Loan fee, Tax	5-10%
Land	1-5 acres	2-5%
Technology	computers, treatment planning software	2-3%
Furnishing	Furniture's, decors, clinic equipments	1-2%

(NUMBERS ARE APPROXIMATE)

Components of Particle Beam System

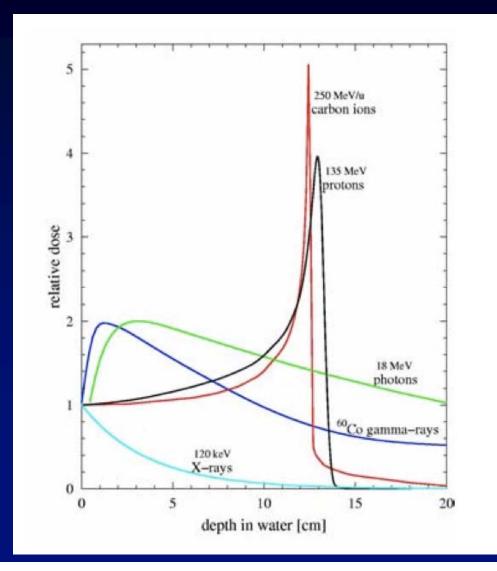
- Particle sources, accelerator, gantry.
- Nozzle design
- Treatment planning system
- Control system
- Imaging systems for planning (CT, MRI, PET)
- Patient immobilization and transport system
- Patient positioning and verification system
- EMR and IT solution


Key Factors for selecting equipments

- Cost to buy and maintenance contract.
- Beam control and delivery system ("Control system")
- Nozzle design
- Patient position system
- IGRT system
- Accelerator: Cyclotron vs Synchrotron
- Scanning beam type: raster, uniform, spot, IMPT
- Dose rate, spot size, field size, aperture, room matching.
- Beam switching time, beam pause, time-on delay
- Time required for maintenance, uptime guaranty, service

Technology Providers

Particle beam


- Varian
- IBA
- Optivus
- Mevion
- Protom
- ProNova
- Sumitomo
- Hitachi
- Mitsubishi

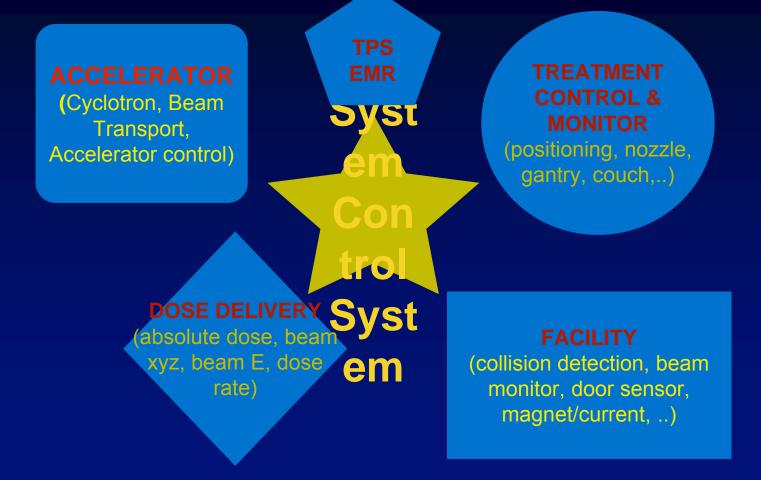
Cyclotron versus Synchrotron

	Cyclotron	Synchrotron		
Intensity	High and constant	Lower		
Energy Flexibility	Fixed, variable by	Fast		
	degrader (4 MeV/s)	(4 MeV/s)		
Proton is accelerated in	Spiral pattern	Fixed radius circular		
		pattern		
Typical size	3 – 4 meter	6 to 7 meter		
Weight	Higher	Lower		
Beam size &	smaller beam size	larger		
energy spread	$\Delta E/E = \pm 0.5\%$	$\Delta E/E = \pm 0.1\%$		
Neutron generation @ acc.	High	Low		
Accelerator shielding	More	Less		
Beam Delivery Efficiency	ov 50-95%	∾ 90%		
Power consumption	300 kW	370 kW		
Complexity	Lower	Higher		
Beam current	Higher and less noise,	Lower, more noise, less		
	more stable	stable		

Carbon versus Proton

Carbon's advantages over Proton

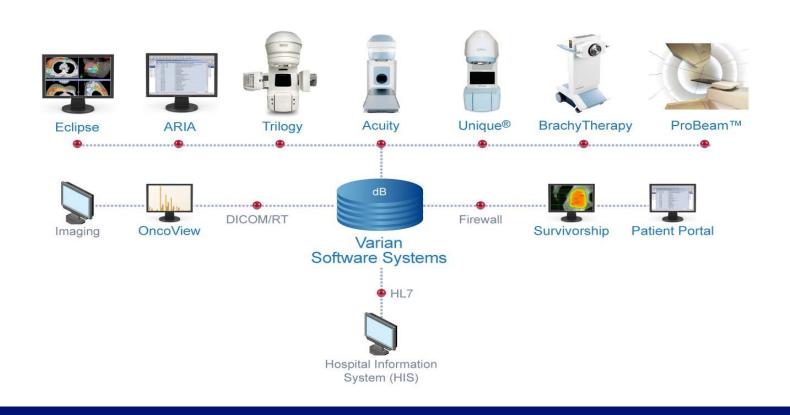
- Higher (more pronounced Bragg's peak)
- Higher Radio-Biological Equivalence (RBE = 3)
- High LET = theoretically better for hypoxic or radio-resistant tumors and cell-cycle independent cell kill.
- Sharper lateral beam penumbra.


Carbon's disadvantages to Proton

- Much higher cost (2-3x)
- The distal tail fall-off can be a liability (despite at much lower dose and of low LET)
- Varying RBE over the different parts of the Bragg's peak (complex treatment planning)
- Currently not approved in U.S. (= no reimbursement code yet, at best same as proton)

Image Guidance and Range Verification

- kV x-ray digital radiograph
- kV x-ray of fiducial markers
- Cone-beam CT
- Body-surface 3-D tracking
- respiratory motion: 4-D CT, gating versus tracking
- Dose/Range Verification with PET, MRI, etc
- Proton CT


Control System = "The Brain" The most critical component of all

Choosing Technology Providers

- The latest in equipments and hardware
- Experience and expertise
- Financial and technological resources to solve unforeseen problems
- Commitment to research and development
- Reliability and customer service
- System integration: fewer vendors = fewer issues

Varian Integrated Oncology Network

How many gantries ?

- What is the expected patient breakdown?
- What are the competing technologies in the center (GammaKnife, CyberKnife, HDR, IMRT)
- How are patients being treated at nearby proton centers ?
- What are current treatment protocols ? (hypofractionation ?, APBI ?, pelvic XRT for prostate ?, etc.)

Gantry utilization depends on:

- Patient load & demographics
- Complexity of treatment
- Efficiency of treatment process and scheduling
- Scanning beam versus passive beam
- Treatment accessories
- IGRT: kV images, CBCT, PET, respiratory gating/tracking

5-room Setup 2 Gantries + 3 Fix-beam

Annual total # patients =	2000										
# hours per day =	16										
# days per week =	6										
# week per year =	50										
						# treatments					
	Patient			% case	% case	per patient	Load on	Load on		Combined load	% load
Patients type	Percent (%)	# patients	# min/tx	Gantry	FixBeam	Per course	<u>Gantry</u>	<u>FixBeam</u>			of total
	========	=======	=====	=====	=====	==========					
Prostate	50	1000	20	30	70	35	3500	8167	==>	11667	51
Pediatrics	5	100	40	95	5	15	950	50	==>	1000	4
CNS	5	100	25	85	15	30	1063	188	==>	1250	5
H&N	5	100	30	80	20	35	1400	350	==>	1750	8
Thorax/Lung	10	200	25	90	10	35	2625	292	==>	2917	13
Breast	5	100	20	80	20	10	267	67	==>	333	1
Abdomen (GI)	5	100	25	85	15	25	885	156	==>	1042	5
Pelvis - Gyn-Bladder	5	100	25	85	15	30	1063	188	==>	1250	5
Sarcoma	5	100	25	80	20	35	1167	292	==>	1458	6
Eyes	5	100	30	0	100	5	0	250	==>	250	1
============	=====	=====									
% Total case =	100	2000									
							GANTRY	FixBeam		<u>TOTAL</u>	
							======	======		======	
						Total LOAD ==>	12919	9998	==>	22917	
						Available ==>	9600	14400	==>	24000	
							======	======		======	
							35%	-31%		-5%	
				•						•	

5-room Setup 3 Gantries + 2 Fix-beam

Annual total # patients =	2000										
# hours per day =	16										
# days per week =	6										
# week per year =	50										
						# treatments					
	Patient			% case	% case	per patient	Load on	Load on		Combined load	% load
Patients type	Percent (%)	# patients	# min/tx	Gantry	FixBeam	Per course	<u>Gantry</u>	<u>FixBeam</u>			of total
	========	======	=====	=====	=====	=========					
Prostate	50	1000	20	30	70	35	3500	8167	==>	11667	51
Pediatrics	5	100	40	95	5	15	950	50	==>	1000	4
CNS	5	100	25	85	15	30	1063	188	==>	1250	5
H&N	5	100	30	80	20	35	1400	350	==>	1750	8
Thorax/Lung	10	200	25	90	10	35	2625	292	==>	2917	13
Breast	5	100	20	80	20	10	267	67	==>	333	1
Abdomen (GI)	5	100	25	85	15	25	885	156	==>	1042	5
Pelvis - Gyn-Bladder	5	100	25	85	15	30	1063	188	==>	1250	5
Sarcoma	5	100	25	80	20	35	1167	292	==>	1458	6
Eyes	5	100	30	0	100	5	0	250	==>	250	1
==========	=====	=====									
% Total case =	100	2000									
							GANTRY	FixBeam		<u>TOTAL</u>	
							======	======		======	
						Total LOAD ==>	12919	9998	==>	22917	
						Available ==>	14400	9600	==>	24000	
								======			
							-10%	4%		-5%	
											1
			-		-	!			1		

Source: Patyal, PTCOG 49 presentation, 2010, Japan

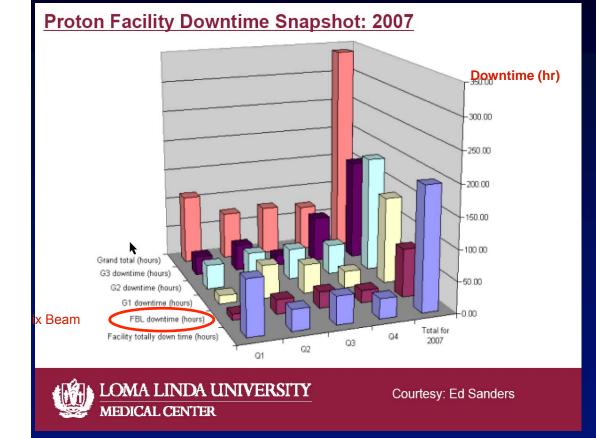
Patyal_LLUMC_Maintenance

Operations

Typical Proton Facility Weekly Usage

MODE	HOURS	PERCENTAGE				
Treatment	85	50.6%				
Calibration	20	11.9%				
Maintenance	8	4.8%				
Research	39	23.2%				
Upgrades	16	9.5%				
TOTAL	168	100%				

DESCRIPTION AND A LINDA UNIVERSITY MEDICAL CENTER


© 2010 Optivus Proton Therapy

2

Disadvantages of Gantry

- Less accurate iso-center
- Cost more to build and maintain
- More work to maintain and more to QA
- More moving parts = more prone to break

LLUMC Experience – Downtime

About 50% of downtime is due to power supply issues

The other 50% downtime is due to electronics, computer software/hardware.

1/3 of work orders are unplanned

Gantry has 2-3 times more downtime than fix-beam!

Downtime = poor patient care + staff frustration + cost

Source: Patyal, PTCOG 49 presentation, 2010, Japan

Important Parties/People

- Advanced Particle Therapy, LLC: Jeff Bordok, Jim Thomson, Sara Hutchinson, John Mishalanie, Jolene Alldridge, Casey Gilley, James Phillipe
- Haskell construction and architect: Roland Udonze
- Signet Development: Jason Perry, Ken Krismanth, Anthony Manna

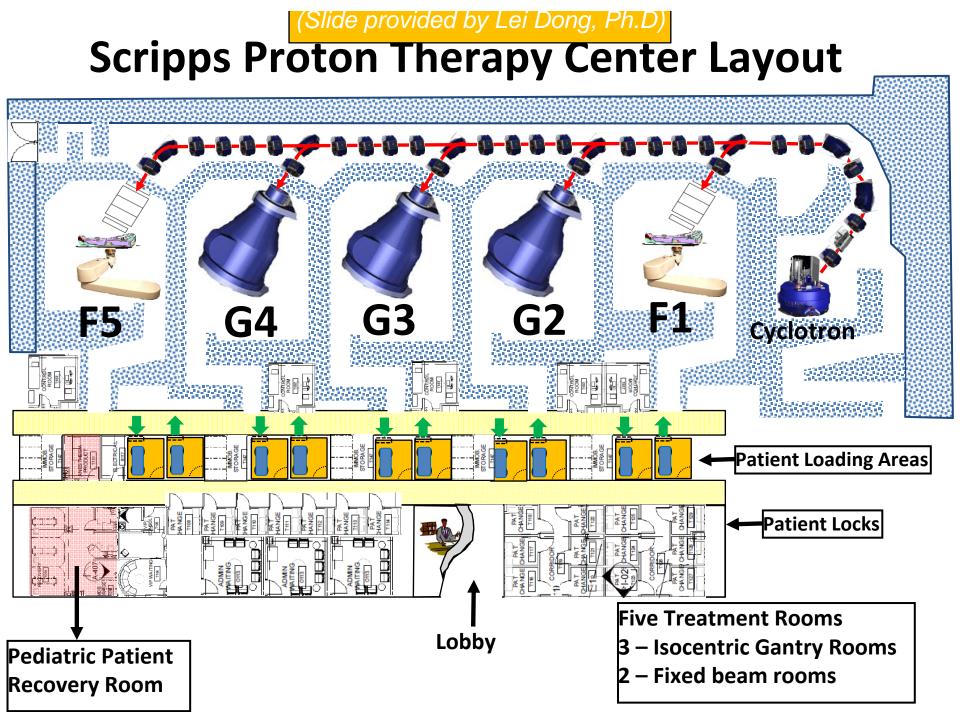
Sept 2010

Advanced Particle Therapy, LLC Construction: Haskell Architect: Roland Udonze Project Management: Signet Development

Sept 2011

Sept 2012

Upstairs: 30,000 sqft - Nonclinical staff/space Downstairs: 70,000 sqft - Clinical operation



Project Timeline

- August 2010: Groundbreaking
- 2012: Cyclotron Delivery
- February 2014: First patient treatment

Cyclotron

- Accelerates particles to 250 MeV
- 800nA beam current with > 90% extraction efficiency
- Superconducting
 - Cooled to 4 Kelvin (-452.5° F!) to save energy
- Energy resolution: <0.5mm</p>

PBS

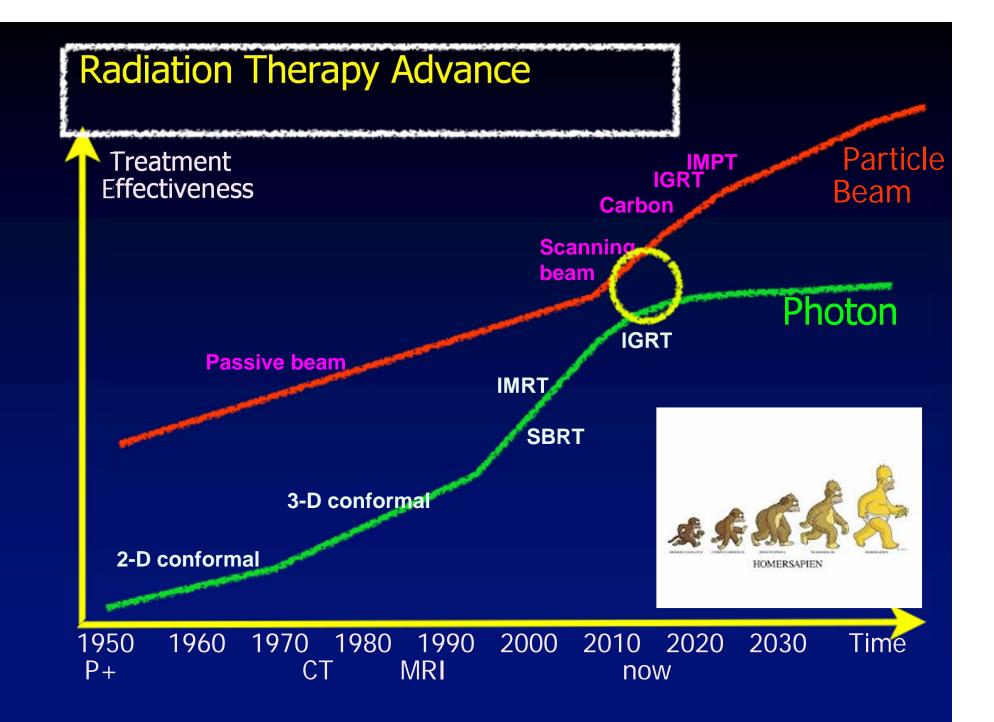
- 70 MeV to 245 MeV continuous adjustable beam energy
- Maximum field size 30cm (width) x 40cm (length)
- Spot positioning accuracy <
 1mm
- Spot size as a function of beam energy: 3.5mm to 6.0mm (1SD)

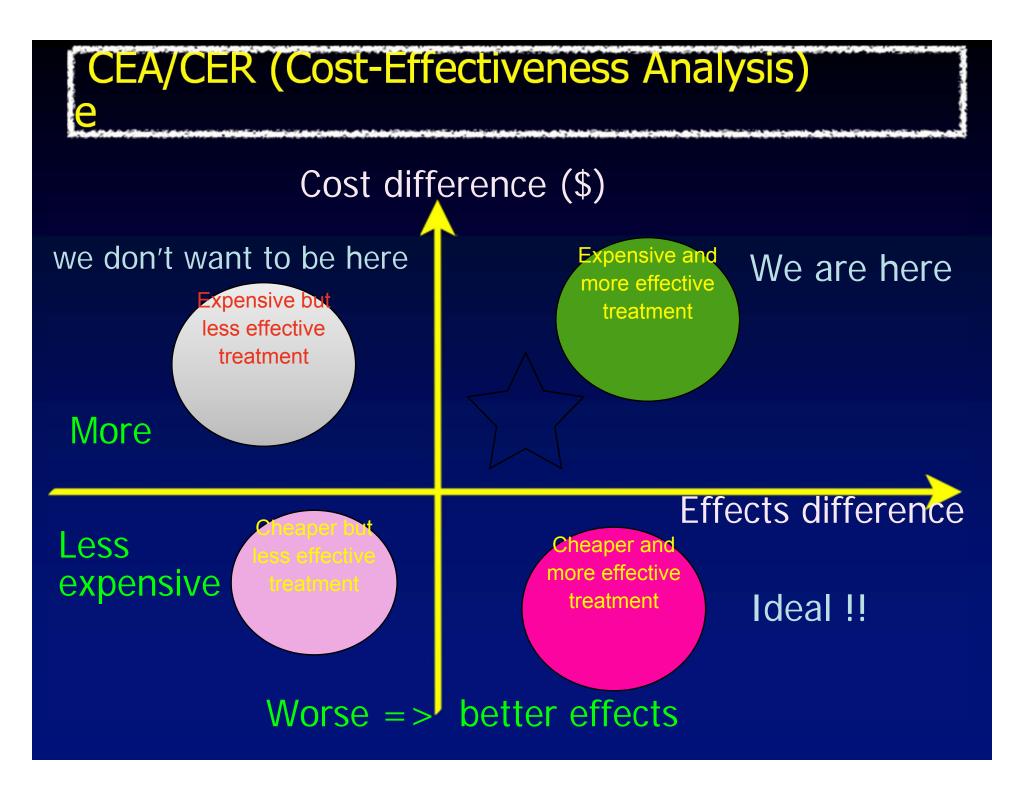
- Gantry
 - Full 360-degree gantry
- Patient Positioning System
 - Robotic couch with 6 DOF
- Imaging
 - Integrated (gantry-mounted) orthogonal x-rays
 - 2D/3D image alignment
 - CBCT volumetric imaging

Source: Jonathan Farr , PTCOG 46 Educational Session

aul At&T रू			7:04 PM		86 % 💻
	Start-up of facilities - MPRI				
	MPI Suggested Initial Staffing Level/Timing				Party Services 1
	Staff	Time Before 1 st Treatment	Full Time Equivalent	Comments	
	Medical Director	3 years	25% years 1-2 100% year 3	Set stage for facility/alliances	
	Physician # 2	6 months	100%	Begin patient consults	
	Chief Physicist	2-3 years	100%	Shielding, jobsite inspection, technology	
	Medical Physicists (3-4)	1 year	100%	Acceptance Testing and Commissioning: 2 x teams: 1 qualified med phys, 1 tech.	
	Treatment Planner	6 months	100%	Sample plans/training	
	PTCOG 46 Educational Session		ational Session	Jonathan Farr	
	A	0	0	-	

Key Personnel Early in the Process


- Medical Director: Carl J Rossi, MD
- Chief Medical Physicist: Lei Dong, Ph.D


One year, 2 months, 8 days since we treated our first patient

- We are treating all cancer sites
- Motion management with 4-D CT and SDX DIBH
- All five rooms are operational
- Our uptime is very good !
- Varian team has been very responsive in service and updating the systems (Yelp - 5 ****)
- Great collaboration with UCSD's partners (James Urbanic, John Eincks, Kevin Murphy, Parag Sanghvi)
- Collaborating with other center in clinical trials

One year, 2 months, 8 days since we treated our first patient

- We are treating all cancer sites
 - Carl Rossi (GU and Lymphoma)
 - Ryan Grover (CNS, Spine, H&N, Gyn)
 - Andrew Chang & Atman Pai (Peds, backup other)
 - Huan Giap (Lung, GI, and Breast)
- Great Physics/Dosimetrist team: Lei Dong, Richard LePage, Annelise Giebeler, Luis Perles, Gary Zhang. Dana Blasongame, Thorsten Ostrander, Robin De Los Reyes
- Dedicated nursing staff (Angie, Maura, Caroline, Karen, Anna, Grace, Debbie, and Emlyn), well-trained RTT, and Admin team.

How to lower the cost of particle beam therapy ("financially sustainable")

- Reducing the side effects/complications
- Hypo-fractionation
- Scalable facility: fewer treatment rooms at first or single room solution
- Vendors competition
- Evolution of equipments/technology
- Facility efficiency
- Patient selection (most impact)
- New clinical indications (afib)
- Patient choice ?

Are you ready to start particle beam center ?

"Challenges make life interesting, Overcoming them makes life meaningful" Joshua Jackson

