Proton Therapy for Head & Neck Cancers

Robert S Malyapa, MD, PhD and William M Mendenhall, MD

University of Florida Proton Therapy Institute, Jacksonville, USA

Carmen Ares, MD and Ralf Schneider, MD *Paul Scherrer Institute, Villigen, Switzerland*

PTCOG Educational Workshop, Essen, 2013

 \Box Protons are attractive to radiotherapy because of their physical dose distribution

 \Box The RBE of protons are indistinguishable from 250 kV X-rays, which means that they are 10-15% more effective than 60 Co (RBE=1.1)

 \Box The OER of proton beams is not distinguishable from X-rays $(2.5 - 3)$

 \Box Protons are sparsely ionizing, except for a region at the end of particles' range

 \Box This high LET component is restricted to a tiny portion of the terminal track (this should be kept in mind when planning treatment close to critical structures)

• Biggest advantage is **physical dose distribution**

 \Box Preservation of visual function by reduction in dose to optic apparatus

 \Box Potential to further improve quality of life

- o Improved salivary gland function by sparing of parotid and submandibular glands
- o Improved swallowing function

 \Box Potential to escalate dose for hypoxic tumors while maintaining improvement in quality of life

The Potential Benefit of Radiotherapy with Protons in Head and Neck Cancer with Respect to Normal Tissue Sparing: A Systematic Review of Literature

Tara A. van de Water, Hendrik P. Bijl, Cornelis Schilstra, Madelon Pijls-Johannesma, and Johannes A. Langendijk

877 papers were retrieved and 14 relevant and eligible studies were identified and included in this review. Four studies included paranasal sinus cancer cases, three included nasopharyngeal cancer cases, and seven included oropharyngeal, hypopharyngeal, and/or laryngeal cancer cases. Seven studies compared the most sophisticated photon and proton techniques: intensity-modulated photon therapy versus intensity-modulated proton therapy (IMPT). Four studies compared different proton techniques. **All studies showed that protons had a lower normal tissue dose, while keeping similar or better target coverage**. Two studies found that these lower doses theoretically translated into a significantly lower incidence of salivary dysfunction.

Oncologist, March 2011, 16(3):366

Oropharyngeal Carcinoma 72 Gy

IMRT PROTONS

Is there a benefit?

Is there a benefit?

Is there a benefit?

Lymph node involvement

 \Box Tumor extent that may require overly complex beam arrangements

 \Box Tumor location relative to high-Z dental implants

■ 1 mm slice thickness **non-contrast scan for dose calculation**

 \Box CT with contrast injection used for segmentation but not for dose calculation

 \Box H&N patients often have tooth fillings and metal implants

 \Box Tooth fillings can completely stop the proton beam

 \Box Titanium objects can perturb proton beams. Their presence in the beam path should be minimized by selection of beam angles

 \Box Streaking and high intensity artifacts should be contoured and appropriate HU values assigned to them

Metal Artifacts

- Appropriate auto-contouring technique selected to match the physical dimension of titanium rod
- All of artifacts outside titanium rod overridden with tissue HU
- Beam paths chosen to avoid dental implant alloy

Proton beam arrangements in H&N

- 3D conformal beam arrangements suitable for scattered beams \Box
- Avoid stopping beam on critical organs □
- Match-line change if necessary \Box

 \Box Distal Margin calculated from estimated uncertainty in CT HUstopping power conversion table

- **Range uncertainty (~2.5% of total range)**
- \Box Relative Biological Effect (RBE): accounting for higher RBE near distal range
- \Box Proximal Margin
- \Box Compensator smearing: 5 mm for H&N
- \Box Compensator border smoothing: 10 mm for H&N
- \Box Through-patch fields

 High skin dose: Selection of beam angles to minimize field overlap on skin

 Higher dose inhomogeneity at air-bone or tissue/implanted metal interfaces

 Range and penumbra uncertainties due to presence of metal objects: avoid beams passing through and stopping on cord

Increased RBE at the end of range: AVOID/Minimize number of beams exiting on critical organs

□ Aperture margins account for beam penumbra at target depth

 \Box Overly tight aperture margins increase dose distribution inhomogeneity and reduce dose distribution calculation accuracy

 \square Due to limited variation of range in H&N treatments, an aperture margin of 0.6 cm is generally used

Normal tissue constraints

FROIDN UF

Proton-specific treatment planning concepts – SOBP and distal blocking

Proton-specific treatment planning concepts – SOBP and distal blocking

Image-guided treatment delivery

Verification scans during treatment

Clinical examples – Ca ethmoid

30 year male with adenoid cystic carcinoma Lt ethmoid and extension to base of skull

Ca ethmoid – IMRT vs. Protons

Ca ethmoid – Post treatment

Esthesioneuroblastoma

74.4 CGE @ 1.2 CGE BID

Esthesioneuroblastoma: Sinus slice view

Esthesioneuroblastoma: Orbital slice view

Proton-Photon Match Fields

Skin with perineural invasion

Re-irradiation: Skin with perineural invasion

74.4 CGE @ 1.2 CGE BID

Re-irradiation: Skin with perineural invasion

Spot Scanning Technique: Developed at PSI and in Clinical Practice since 1996

Essen

Spot Scanning Proton treatment delivery

Adenoid Cystic Carcinoma Submandibular Gland: 59.4 CGE; 68.4 CGE; 75.6 CGE @ 1.8 CGE/fx

Dr. Ralf Schneider

PTCOG Essen

Ca nasopharynx: IMRT + Protons

IMRT: PTV 60 Gy; PTV 69.6 Gy Proton Boost: 4.8 Gy Total PTV Dose = 74.4 Gy $@$ 1.2 Gy BID

Acknowledgement

UFPTI

Zhong Su, PhD

Daniel Yeung, PhD

Craig McKenzie, CMD

Man Yam, CMD

Zuofeng Li, DSc

Roelf Slopsema, MS

PSI

Alessandra Bolsi, PhD Lorentzos Mikroutsikos, PhD Francesca Albertini, PhD Tony Lomax, PhD