

Accelerator and Beamline/Gantry Design from a user's point of view - for optimal beam delivery

Eros Pedroni

Center for Proton Therapy Paul Scherrer Institute SWITZERLAND

Retired from work in 2012 ("Scanning-biased") PTCOG 52 03.06.2013 University of Essen

ACCELERATOR PARAMETERS RELEVANT FOR BEAM DELIVERY

- Particle range up to 30-35 cm (half depth in the human body)
 - energy for protons
 - energy for ions
- We must transport such a beam
 - In <u>vacuum</u>
 - We accelerate the beam with electric fields
 - Max. voltage of order of <u>10 kV / cm</u>?
 - We direct and focus the beam with magnetic fields
 - <u>Ferro-magnets</u> good field homogeneity if the field is below ~ 1.5 Tesla
 - <u>Superconducting coils</u> much higher fields field non homogeneous (beam optics)

~ 240 MeV for protons

~ 460 MeV/nucleon for carbon

- Beam rigidity -> limits the bending radius applied to a particle beam
 -> defines size of accelerator and facility
 - Min. bending radius <u>R ~1.5m</u> (p) 3.8 m (C) -> area size 10-20 m
 - Multi-area facility ~ size 50m (p) 100m (ions)

E. Pedroni Brugg Switzerland PTCOG 52 - Essen 03-06-2013

Accelerator performance for <u>scanning</u> Beam time structure, stability, intensity control

Increasing PERFORMANCE

 Magnetic scanning (PSI Gantry 1) Beam ON-OFF at jump to next spot 	DC beam state of the art @ PSI	Pulsed be	<mark>eam</mark> I shown ye
 <u>1 liter</u> - 5 mm grid - 21³ ~ 10'000 spots/l <u>100 sec</u> treatment time - 100 spots/s <u>1% dose</u> precision (spots mean 10 ms) Trigger beam off @ 99.5% spot time 	<u>Count MU</u> <u>MU shorter as 100 µs</u> Same order as the monitor response time and time to re-act on	Count pulse ~10 kHz pul or 100 pulses/s dose contro	<u>s @ rate c</u> <u>ses/s ???</u> s with 2% I precision
 Resolve spots @ <u>100 µs time scale</u> Repainted scanning (PSI Gantry 2) Continuous beam scanning 	<i>beam</i> 2-5% <u>dynamic control</u>	per spot=pulse ??? Adjust dose before the pulse is accelerated <u>1 kHz</u> with 2% <u>dose</u> <u>control per spot/pulse</u> ???	
 Variable magnetic scan speed Dynamic beam intensity control Paint lines to reduce beam off dead time 10 ms / line - 300 ms / energy - 10 s/liter 	time scale of 100 μs Feed-back loop from monitor to ion source Stable beam		
E. Pedroni Brugg Switzerland P	TCOG 52 - Essen 03-06-201;	3	Increasing

Accelerator performance for scanning Energy variations

BASIC ACCELERATOR CONCEPTS

Electrostatic accelerator?

Electrostatic - 250'000'000 Volts?

- Conceptually simple
- Practical limits $\Delta V \sim 10 \text{ kV}$ for gaps of a few cm
- Best achieved so far (nuclear physics era)
 - Tandem van de Graaf we can get up only to 10-20 MV

• We therefore must apply a stepwise repeated acceleration (100-1000 times)

Oscillating electric fields -> accelerator <u>RADIOFREQUENCY</u>

Source 250 MeV "Static idea" not feasible in practice for P-Therapy

"In theory...

1932 First electro-static accelerator J.D. Cockcroft und E.T. S. Walton

PTCOG 52 - Essen

03-06-2013

Linear accelerator ? Repeat acceleration using a sequence of RF cavities

- Cavity transit time adjusted to RF
 - Constant radiofrequency
 - Synchronize particle transit time with RF via varying cell length L= v(E) .T
 - Complex mechanical construction
- Total length ~20 m
- DC beam? Possible in theory...
- Technical limitations ...
 - Power
 - Heath
 - -Pulsed beam with short pulses
- Presently used only as injector for PT synchrotrons

1928 First linear accelerator (50keV) by R. Wideröe 1946 proton linac L. W. Alvarez

v=0 to 0.5 c 0-60 cm/ns L= order of cm > GHz Frequency

Working point below max E field to provide longitudinal focusing

E(t)

PTCOG 52 - Essen

100 MeV / m ?

Holy grail

Next idea - cyclic machine with magnetic field

Folding the linac for re-using the RF cavities

Synchronization of cyclic machines

Relativistic effects

- 0->250 MeV protons
- Velocity $v = 0 \rightarrow 0.6c$ (c velocity of light)
 - Revolution time $2.\pi$.R / v ~ 20 ns (@ R=1.5m)
 - Rotational frequency (and RF) of the order of 50 MHz
- <u>Mass increases from 1 to 1.3</u> along the spiral
 - The synchronization of the particle bunches with the RF must be precisely adjusted - a question of accelerator design
- Three different ways of solving the problem
 - Dynamic RF(t) varies with particles acceleration
 - Static magnetic field designed for synchronicity
 - Double dynamic RF(t) and magnetic field B(t)

SYNCHRO-CYCLOTRON ISOCHRONOUS CYCLOTRON SYNCHROTRON

Cyclic machines - Solution 1: Synchrocyclotron Spiral machine with modulated radiofrequency

- Adjust the radio-frequency to the particle orbit-path
 - Using big rotating condenser in the 50s (CERN SC)
 - Today RF control via digital electronics
 - Only one bunch is accelerated along spiral trajectory
 - ~ 20 ns/turn x ~10000 turns?
 - Acceleration time of the order of 200 microsecs?
 - The RF-modulation is the limiting factor for repetition rate
 - Rep rate of the order of 0.5 -1 (10?) kHz possible?
- Pulsed machine with short pulses
 - Not yet proven to be suitable for scanning
 - <u>Fixed</u> energy (why not variable energy? B and RF ?)
- Accelerator type used in the early days of PT !
 - But only for scattering
- Revival : Mevion super-conducting SC; later

03-06-2013

Cyclic machines - Solution 2: Isochronous cyclotron Exact constant time of orbit revolution

• Magnetic field design for constant time/orbit

- Vary <u>magnet gap</u> as f(r)? bad vertical focusing
- Use of separated sectors
 - With "hills" and "valleys"
 - Sectors shimmed for synchronism
 - Needs complex calculations (computers)
 - Tilted edges provide strong vertical focusing

03-06-2013

First cyclotron 1930-39 E. O. Lawrence

- Synchronization applied on <u>multiple bunches</u>
 - More beam than with any other accelerator type
 - Used in the hospitals for isotope production nuclear medicine
- <u>DC beam</u> very good for scanning
- But: accelerator with <u>fixed energy</u>

PTCOG 52 - Essen

Cyclic machines - Solution 3: Synchrotron Ring machine - fixed radius - modulated magnetic field and RF

- Need separate injector extraction
- No energy limit (CERN 20 km ring)

RF ramp up time = beam energy

Dipole (bend) Quads (focus) LINAC (injection) RF (acceleration Extraction

- Variable energy but
 - Pulsed machine (secs)
- Viable solution for scanning
 - -Slow extraction methods producing long lasting pulses

Invented by E.M. McMillan (USA) and V. Veksler (Russland)

Complex physics Lattice

Available ACCELERATORS WITH DC-like BEAM OUTPUT with demonstrated capability of scanning

Commercially available cyclotrons for PT

220 tons 4.3 m diameter

- <u>Normal-conducting magnet</u>
 - IBA (Boston, ...) SUMITOMO (Kashiva)

Power consumption	<- high/low ->
Weight	<- high/low ->
Magnet coil repair time	<- short/long ->

Both well established solutions

300 KW - 90 tons 3.4m diameter 100 KV in 4 Dees Closed He Loop

- <u>Super-conducting solution</u>
 - ACCEL VARIAN
 - Accelerator for PT at PSI
 - First PT facility in Munich

E. Pedroni Brugg Switzerland PTCO

PTCOG 52 - Essen 03-06-2013

Disadvantage of cyclotron-based PT - the fixed energy

<u>Requires the use of a degrader</u>

- Variable amount of material in the beam line
- Analyze the degraded with beam line + collimators

Disadvantage

- Beam intensity lost at low energy
 - -> by orders of magnitude
- Equalization of intensity losses (PSI new Gantry 2)
- -Advantage of using a degrader
 - Fast energy changes 80 ms for 5 mm range (PSI G2)

Synchrotrons need slow extraction for delivering scanning

- Idea to "peel-off" slowly a small part of the circulating beam
- During an extended beam spill we have a DC beam
 - Duty factor ~ 0.5 f(spill length)

Configuration of the extraction system.

Very complex physics - an own artWorking near a resonance ...Phase space stability regionsSeveral extraction methods most diffused Knock Out method

(Tsukuba - Hitachi)

The synchrotron is presently the only solution used for ion therapy

- Berkeley pioneering work with ions stopped
- Chiba first facility dedicated ion therapy
- Darmstadt first raster scanning transfer to HIT
- Hyogo Heidelberg Gunma Pavia ...
- Facility size
 - Factor of two bigger than a proton facilities due to the magnetic rigidity of the beam (factor ~2.5 higher)

Comparison of cyclotron vs. synchrotron for scanning

Energy		Cyclotron + degrader		Synchrotron
Variable energy		Yes		Yes
Speed of energy changes	+	A few secs - PSI - 80 ms		A few secs - NIRS m-energies?
Time structure	· 	DC beam		~ DC beam
Duty factor	<i>T</i>	100%		50% ? - ramp dead time
Beam stability	+	Very stable beam		Stable beam?
Beam intensity modulation	+	Yes (IBA-PSI)		Yes? - NIRS I-modulated spill?
Beam intensity		High intensity		Enough intensity
Beam size < physical limits		Yes (larger phase space)		Yes (smaller but irregular p.s.)
Size and weight		Compact		Larger - but lower weight
Degrader activation		Activation/shielding (local)	+	Cleaner machine
Dynamics		With beam line only		Accelerator + Beam line
P-Radiography		Only for head		Head and body (350 MeV)
<u>lons</u>		Future SC-cyclotron?	+	Many different ions

Feasibility of synchrotron with multi-energies extraction per spill?

- Japanese research at NIRS Feasibility of
 - Several sequential energies per spill
 - Modulation of beam intensity during slow extraction
 - Use of a (limited-depth)
 range-shifter
 used within a spill-energy

 Similar performance as with a cyclotron?

GANTRY CONCEPTS

The first hospital-based proton therapy facility in the world at Loma Linda University (California USA)

Loma Linda gantry - cork screw gantry -

- The first proton gantry in the world
- <u>"Cork screw" gantry</u>
 - Invention of Handy Kohler (Harvard cyclotron)
 - Radial extent mostly on a disk
 - Saves shielding (volume)

Side view

Front view

Scattering-based (1992) Beam spreading started downstream of the last bend

Gantry 1 of PSI in 1992 - The first scanning-gantry in the world

- eccentric barrel gantry -

- Gantry radius reduced to only 2m
 - Eccentric mounting of patient table on rotating gantry front wheel (counter-rotation of table)
 - *Missing: a moving floor under patient table*
 - Scanning started upstream of the last bend
 - Parallel beam scanning (infinite SSD)
 - Patient table motion as third scan axis
- SOBP with <u>range shifter</u> in front of the patient

- Variable beam line energy (but fixed per field)

Realized for 360° gantry rotation A 180° rotation gantry with a robotic table and a false floor would have been a better solution

PTCOG 52 - Essen

"Standard" layout of commercial systems – since end of 90's ... - conical gantry -

- 135°bending magnet
 - Shorter length but larger radius
 - Cylindrical treatment cell
- Initially only for passive scattering
- Lately also for scanning

E. Pedroni **Brugg Switzerland** PTCOG 52 - Essen

Hyogo – 2001

03-06-2013

of Varian in Munich

Beam spreading

downstream of the last bend

Munich

The new Gantry 2 of PSI

- 180° barrel gantry -

- Iso-centric layout
- Gantry rotation limited to [-30°,180°]
 - Provides very good access to isocenter
- In-room sliding-CT
 - alternative -> cone down CT?
- Gantry with upstream scanning
 - Double magnetic parallel scanning

- For developing advanced scanning
 - Volumetric repainting
 - with fast energy changes 80 ms
 - Dose painting spots / lines / contours
 - Variable magnetic scan speed and
 - Dynamic control of beam intensity
- E. Pedroni et al. 2011 Eur. Phys. J. Plus 126:66

E. Pedroni Brugg Switzerland

PTCOG 52 - Essen 03-06-2013

The PSI's idea of a "180° gantry" ... is now taken over by industry

E. Pedroni Brugg Switzerland PTCOG 52 - Essen 03-06-2013

Compact super-conducting synchro-cyclotron mounted directly on a gantry MEVION

11 facilities ordered in the USA

- Similarity in size with a conventional electron LINAC
 - No beam line cheaper simpler for easier diffusion in hospitals
- With compromises in the beam delivery?
 - Fixed field energy at highest energy (no beam energy analysis)
 - Without limiting the quality of the dose distribution?
 - Pulsed beam only passive scattering? (only for a start?)
 - Good enough for competing with modern photon-RT and IMRT?
- Potential to develop scanning?

E. Pedroni

- Needs to control beam intensity pulse by pulse? (per spot?)
- Very high repetition rate ~ kHz? (more pulses /spot?)
- <u>Range shifter</u> in front of the patient? (keep air gap small !)
- Idea to use multi-leaf <u>collimators</u>? (use for IMPT?)
- Eventually variable energy? a few energies (slow change)

- Specialized units? Head gantry (160 MeV) / body gantry (250)?

PTCOG 52 - Essen

03-06-2013

Exciting concept / worth investing in new beam delivery developments

Brugg Switzerland

The response of the other facility providers...

- Compacts but "full-fledged" single room facilities...
 - With variable energy in the beam line
 - Examples: Sumitomo Varian Protom IBA (Proteus Nano)

Idea to make PT accessible also to small hospitals

The first and only gantry for ion therapy – at Heidelberg (HIT)

ONGOING AND FUTURE DEVELOPMENTS

Pulsed accelerators

with variable beam energy (per pulse) and high repetition rate

Injection reference orbit

• FFAG

- Fixed field alternating gradient
- Large momentum acceptance
 - Same concept also for gantry?
- Cyc-linac
 - Cyclotron for isotope production
 - Combined with a linac

Needs beam intensity control per pulse for delivering scanning

Experimental FFAG at Kyoto University For energy amplifier

Amaldi et al, Nucl Instr Meth A 521(2004) 512

PTCOG 52 - Essen

Futuristic accelerator technologies

- Basic research Not yet mature for intended use
 - Laser acceleration C. M. Ma, Laser Physics, 2006, V16,4,639
 - <u>Plasma waves</u> Nature 449 133-135 2007
- Under development within reach?
 - Dielectric Wall Accelerator (High gradient Linac)
 - Collaboration with company Tomotherapy
 - Photo-electric switches
 - Aiming at 100 MeV/m
 - Scanning?

Caporaso et al, NIM B 261 2007 777

03-06-2013

Superconducting cyclotrons for ion therapy steady beam by design

- Project Archade Caen (FR)
- IBA prototype -> 2015
 - 260 MeV H2+
 - By stripping
 - 400 MeV/n ions
 - By deflector
 - 6.9 m diameter
 - 660 tons
- Medical facility later project Etoile in Lyon

Degrader design for concurrent radioactive beams? (I. Yongen) C¹¹ ?

- Catania design (INFN It)
 - Lower energy
 - 250 MeV protons
 - 300 MeV/n
 - 4.9 m Ø
 - 320 tons

E. Pedroni Brugg Switzerland

PTCOG 52 - Essen

03-06-2013

Superconducting gantries?

Advantages

- Low power consumption
- Very high magnetic fields
 - Small magnet size
 - But large cryogenics vessels?
- Disadvantages
 - Field homogeneity difficult
 - Use of <u>multiple coils</u> or
 - <u>Tilted winding</u> along coil
 - Very slow changes of the beam energy
 - Large momentum acceptance optics
 - Fringe field (without return yoke)
 - Environment like in a MRI ?

Gain significant only for ions?

Ideas presented at the Workshop on Hadron Beam Therapy, Erice, Sicily, 2011

S. Caspi Lawrence Berkeley National Laboratory

03-06-2013

E. Pedroni Brugg Switzerland PTC

PTCOG 52 - Essen

Cheap protonsOR (AND?)high-tech protons?The cheapest solution of today is may be not the best investment for tomorrow

Line Scanning Shape: Sphere Volume: ~0.5 liter Dose: 0.1 Gy Number of energy layers: 18 Application time: 7s

- Example of advanced beam scanning techniques (PSI new Gantry 2)
 - Needed for competing with today's most advanced conventional therapy?
 - Acknowledgments
 - D. Meer
 - S. Zenklusen
 - M. Schippers

Books: Ion Beam Therapy, Ute Linz ed, Springer Verlag