General Treatment Planning

A.Mazal, L.DeMarzi, N.Fournier-Bidoz, S.Delacroix, S.Zefkili, C.Nauraye, M.Robilliard, G.Gaboriaud, R.Ferrand, J-C.Rosenwald, R.Dendale, L.Desjardins, A.Fourquet

Institut Curie, Paris, France

Acknowledgments: M.Goitein, B.Schaffner, M.Engelsman, N. Schreuder, E.Roelofs, A.Trofimov, J.Flanz, H.Paganetti, H.Kooy, J.Adams, Z.Tochner, E.Hug, H.Giap, Canceropôle, Rococo, France Hadron IBA, Varian, Dosisoft, Areva

institut**Curie**

PTCOG52 Essen 2013

Menu of today

- The process of planning
- Some differences with protons
- Calculating models
- Compensators : "smearing"
- Limitations of protons
- Basics of planning
- (If time :
 - TPS validation & QA,
 - Management of organ movement)

What can we see when we are used to plan with photons ... and move to protons? (1 beam, concepts ~ valid for passive and active techniques...)

(Sub)liminal message

BUT PLANNING

IS NOT ONLY

ISODOSES and **HISTOGRAMS**

<u>The planning process :</u>

<u>« First simple case » : Ophthalmologic tumors</u>

Imaging Obtain and inter-register imaging studies : CT, MRI, fundus, angiography, ultrasound

Immobilisation & reference coordinates :

masks, frames,... and/or...

Use of implanted fiducials

Delineate target, planning aims and beam design

Daily set-up control

	step	
	1	Evaluate the patient
	2	Register Images in tt position
	3	Delineate target and critical organs
	4	Establish the planning aims
ĺ	5	
	→	Design beams
, 	6	Evaluate, replan
ĺ	7	Finalize the prescription
	8	Simulate, QA
	9	Deliver, record, verify
	10	Re-evaluate during treatment
	11	Document, archive
	12	Review during follow-up

The planning process in general

(adapted from M.Goitein)

Steps are common for any approach in RT...

TPS : beam models

Broad beam algorithm - Concept

institut**Curie**

Ray tracing :

straight protons (no scattering), coming from a ponctual source

* latéral pénumbra model => takes into account scattering due to :

- initial beam line
- compensator + air-gap
- patient
- \Rightarrow Limitations in inhomogeneous areas and for compensator gradients

 \Rightarrow Old, simple, fast and relatively efficient

2) Pencil Beam

Eclipse pencil beam algorithm - Concept

- Principle
 - Convolution of 3D undisturbed proton fluence in air with a 'beamlet' in water.
- In practice
 - Superposition of inhomogeneity corrected beamlets and multiplication with fluence at calculation position.

Pencil Beam :

• Scattering = broadening of each pencil beam (\Leftrightarrow increase of the σ as a function of depth & upstream parameters)

- Good compromise speed-precision:
- well-suited for compensator
- « smoothes » isodose curves

The most used at present

TPS beam models : Monte Carlo

Tracking each particle and all interactions (Geant 4, MCNPX,...):

- Beam at the entrance (E,dE,...)
- Treatment Head/nozzle
- 4D if movements
- Patient CT:
 - HU \rightarrow groups of tissues

Paganetti, Bernardz, et al

0 5 10 (van Lujik et al)

Comparison PB-MC (Paganetti, Trofimov, et al

Applications of Monte Carlo :

Precise dose calcs with inhomog

Calculation of neutrons

Tissue activation for PET QA

Calculation of LET \rightarrow RBE

Conversion from water to tissue dose

Bednardz, PTCOG49 / (Data from Paganetti, Shin, Espana, Oelfke, Athar, Xu and Bolch)

The planning process in general – and the differences between protons and x-rays

(from M.Goitein)

Plot of calculated (HU_{sc},SP_{rel}) pairs and linear fits

Ex of a compensator

2nd reason to smear : Mis alignements and/or organ movement

 \rightarrow See at the end, or other presentations in this course

TPS : Compensator design

- 1. Geometrical ray-tracing (taking inhomogénities into account)
- 2. Smearing (2-> 6 mm) :

compensates for uncertainties, scattering, movements ||

- 3. Dealing with borders (no target)
- 4. Tool simulation (\Leftrightarrow 2nd smearing)
- 5. Milling file generation
- 6. QA (mechanical, radiological, measurements...)

Tool simulation

Borders

But... if « complex » heterogeneities : not only a « ray tracing approach », also multiple scattering effects :

Patient Contour

Properties of planning with passive beams

Good lateral penumbra (~10-15 %/mm) shaped by aperture

* « 2,5 D » tumor shaping (lateral and distal shaping, not proximal)

 Lateral penumbra sensitive to air gap (between aperture and patient)

With this approach:

- \Rightarrow Get profit of proton characteristics
- \Rightarrow Minimize risks and drawbacks
- \Rightarrow Not using the full « potential » of protons

Limits: Degradation of balistic properties

Entrance dose 80 (& small buildup) 60 40 20 0 120 Small field size Dose [Rel.Units] 100 < peak/entrance 80 60 40 20 n n 2 Degradation After complex Inhomogeneities (and problem of CT artifacts)

⇒ Check that TPS takes all this into account

Effect of density changes (eg : in the target volume or in the beam path)

Similar effects for CT artifacts, contrast, mispositioning or organ movement

Need to survey the anatomical changes in the path after the planning CT and till the end of the treatment

Planning basics

Abbuting fields

Patch fields

Lateral penumbra + Lateral penumbra

Distal penumbra + Lateral/distal penumbra

<u>Clinical applications:</u> <u>Eg: Base of the skull tumors</u>

Non coplanar beams

Photons-protons

Junctions, patching

CONFORMAL P

General planning tricks and some useful rules

- ★ Entrance dose (++) =>
- multiply the ports, combine with photons
- * Patch fields risky (hot & cold spots) =>
- limit the dose/patch (eg < 8 CGE)
- design several patch fields
- Uncertainties on distal edge position (mask, inhomogeneities) + RBE =>
- don't stop beams with high dose in front of OAR (if possible...)

* avoid « risky » ports (through nose, tongue, …)

Practical examples (CPO)

DOSIsoft Isogray - version 3.1.beta0024-CP0009 Patient: AXEL ADOU ID: 07357 Etude: compisis_isogray_v31

Rhabdomyosarcoma

Chondrosarcoma (X + p)

Combination protons – Tomotherapy N. Fournier-Bidoz, C.Nauraye et al, PTCOG 2013

Fig.3: Dose distribution combining 55.8 GyE protons with 18 Gy tomotherapy (rectal wall in green, PTV_55.8Gy in purple, PTV_73.8Gy in dotted-red)

Practical example (MGH)

Judy Adams et al, Skin sparing Lacrimal gland

ROCOCO (Maastro & > 15 institutions involved)

Erik Roelofs et al, ROCOCO Trial, PTCOG 51, 2011

Conclusions (I) : see in the clinical presentations for each location that

- Planning with (passive) protons is "easy" as :
 - no dose behind the target
 - easy to conform lateraly (as photons)
 - no max dose at entrance
 - homogeneous dose to target
 - simple, not optimized but rather robust
- But be aware of the limitations and take care with:
 - Uncertainties in range
 - Deformation of shape if complex heterogeneities
 - High entrance dose mainly for superficial tumors
 - Care with small beams of complex shapes with small areas
 - Sensitivity to anatomical changes
 - Sensitivity to movements → for passive beams, and even more for dynamic beams (see later)

Conclusions (II)

- Importance of TPS validation, QA and users' experience for each plan, for the Treatment Planning System, for the full process
- Synergy & shared experience with photons, electrons, (IMXT, ...)
- Need to be able to provide safe treatments to a large population (social, ethics and business) : optimization of the throughput & combined treatments
- Comparative results in general are : Passive protons >> conventional photons Passive protons ~ > IMXT Intensity Mod PT > IMXT
- Need Gantries to plan all incidences as with photons
- Evolution to MonteCarlo, biological modelling ... and IMPT

Intensity Modulated IMPT-IMZT

Trofimov, Kooy, Bortfeld, Lomax, ...

Next talk T. Lomax

1) TPS validation & QA : « Perturbations » by heterogeneities : Depth dose curves Water Level **Final Collimator** 200 MeV proton Beam 100 Inf%] ve Ionisatio 66 29 A.Mazal, Wanjie, China 50 150 100 Depth (mm)

1) TPS validation & QA :

Profiles in depth, modulated beam, low energy Measurements in Wanjie, China

1) TPS validation & QA :

Ray tracing

Pencil beam

- antropomorphic phantom (skull + fat + air)
- shoot through beam
- Absolute comparison : isodoses in water fantom + TPS isodoses
- \rightarrow gamma function (eg 2%, 2mm, or 3%, 3 mm...)

(R.Ferrand, L.DeMarzi et al)

2) Organ movementsLess sensitive with passive lines:

Beam shaping laterally

using scattering(or fast wobbling) :

Beam shaping in depth :

Spread out Bragg Peak Ridge filters or 1D scanning

Ex: 600 rpm 4 scans/rotation

= 40 scans/sec in depth (« fast repainting »)

Towards dynamic delivery systems while being able to treat moving organs: « interplay » & « repainting » concepts

Mitigation techniques :

- Breath holding
- Compression
- Beam Gating
- Beam Tracking
- Repainting

- ...

Intensity Modulated IMPT-IMZT

Trofimov, Kooy, Bortfeld, Lomax, ...

Next talk T. Lomax