From Double Scattering to Pencil Beam Scanning, Clinical and Operational Summary

Zelig Tochner MD

Roberts Proton Therapy Center University of Pennsylvania

Essen

3/6/ 2013

Requirements for Ideal Proton Delivery Modality

- Cost:
- Initial purchase
- Operation (manpower)
- Maintenance

- Operation:
- Ease of planning, QA, delivery
- Efficiency

Requirements for Ideal Proton Delivery Modality

- Clinical:
- Good conformality for complex shaped targets
- Large fields
- Low dose to normal tissue proximal to the tumor
- IMPT
- Can be used for static and moving targets
- Small penumbra
- Low secondary neutrons

Penn

Clinical limitations of DS/US versus PBS Conformality

DS/US

PBS

- Limited conformalitybase of skull, spinal cord-need patching.
- Patching is problematic.

 Very good conformality

No need for patching

PBS

DVH of bladder and hip joint-DS vs PBS

lose Prescription Dose Statistics

ew \bigtriangledown	DVH Line	Structure	Approval Status	Plan	Course	Volume [cm³]	Dose Cover.[%]	Sampling Cover	Min Dose [%]	Max Dose [%]	Mean Dose [%]	•	
		FEMORAL HEAD	Approved	INI_BU_P3	C1 Prostate	218.3	100.0	100.0	0.0	45.6	31.9	•	
	_	FEMORAL HEAD	Approved	INI SFUD	C1 Prostate	218.3	100.0	100.0	0.0	43.5	26.9	•	
		FEMORAL HEAD	Approved	INI_BU_P3	C1 Prostate	213.2	100.0	100.0	0.0	45.7	31.4	•	
	A	FEMORAL HEAD	Approved	INI SFUD	C1 Prostate	213.2	100.0	100.0	0.0	43.1	26.1	•	
		CTV_5040	Approved	INI_BU_P3	C1 Prostate	103.3	100.0	100.0	95.9	102.1	100.0	•	
	_	CTV_5040	Approved	INI SFUD	C1 Prostate	103.3	100.0	100.0	98.4	102.9	100.8	•	
		BLADDER	Approved	INI_BU_P3	C1 Prostate	212.3	100.0	100.0	0.0	101.4	40.9	•	
	_	BLADDER	Approved	INI SFUD	C1 Prostate	212.3	100.0	100.0	0.0	102.1	34.0	•	
		VIEICOIL D	Approved		O4 Broatata								

touring External Beam Planning Brachytherapy Planning Plan Evaluation

Clinical comparison of DS/US versus PBS Field size

DS/US

PBS

- Limited field size-Maximum of 25cm- can not treat large fields-Whole pelvis, chest wall and LN, lymphomamediastinum and neck, head and neck.
- Large field size~ 35cm (vendor dependent)can treat all body sites.

Penn

Day 2: LT LAT

Day 2: RT LAT

IMRT

PBS

Clinical limitations of DS/US versus PBS

DS/US

PBS

No IMPT option

IMPT enabled

High dose to normal tissue • Lower dose to normal tissue in proximal beam

Brain tumors- PBS vs. DS/US Major improvement for deep targets

Pineal Germinoma

Dose to temporal lobes reduced by

20-25%

PBS 2 lat Field

Penn

D95%, better conformality with PBS. Coverage more homogeneous

DS

Posterior fossa- not always PBS is better then DS

PBS fixed beam

astrocytoma pilocytic juvenile Grade I recurrent

Craniospinal PBS

DS- Patient prone, difficult set us, long table time.

PBS- Can treat supine, easier set up, faster treatment

Adult case: prescription 180cGyx20=3600cGy

Adult case: prescription 180cGyx20=3600cGy

UNIVERSITY of PENNSYLVANIA DEPARTMENT of RADIATION ONCOLOGY

Bolus -7.5cm to enable PBS treatments from the skin for brain and head and neck tumors

Sliding table- 6.8 cm for PBS treatments

Head and Neck Tumors

 With DS/UStreatment of salivary glands, paranasal sinuses, orbits, sarcomas of head and neck

≫Penn

- With PBS- treatment of primaryoropharynex or nasoparynex plus bilateral neck nodes-
- Two fields- SFUD plus IMPT

Head and Neck

2 posterior oblique fields . Treatment via the table PBS- SFUD and IMPT

Penn Sinus H&N case

PBS RA 7521.7 7/379.6 2000.0 2000.0 Total New - Sagittal - CT_040813 Plan Sum BX - Frontal - CT_040813_RA Plan Sum BX - Sagittal - CT_040813_RA

Nasopharynx

Gastro Intestinal Cancers

Using DS/US: Esophagus, Pancreas, Hepatobiliary

Using PBS: Rectal Cancer, Anal Cancer

Rectal Cancer PBS IMRT

Anal Cancer PBS Rapid Arc

Retroperitoneal sarcoma PBS IMRT

Wilms Proton

TREATMENT OF MOVING TARGETS-DS

• With DS routine treatments of mediastinum, lungs, hepatobiliary and upper abdomen.

- Can treat up to 1cm motion
- 4DCT simulation
- Gating/ Deep Inspiration Breath Hold- in some institution

TREATMENT OF MOVING TARGETS-PBS

Currently only targets with no or limited motionup to 4-5mm can be treated.

Need faster PBS- rescanning Gating/ Deep Inspiration Breath Hold Need Cone Beam CT Capability of PBS to treat moving targets is expected in 2-3 years

For Proton to replace x-rays as the main radiotherapy modality

Every site of the body need be treated efficiently with proton

With early version of the first generation of PBS we are already treating, or will be treating soon every site of the body except motion. Next generation of PBS- faster scanning with some motion control will allow treatment of lungs and upper GI

For Proton to replace x-rays as the main radiotherapy modality

- 1.Every site of the body should be treated efficiently with proton
- 2.The cost of purchasing proton system and operating should be reduced significantly
- PBS-no need for compensator and aperturesaving of manpower and time for planning and treatment. Fewer beams per plan-higher thru put. Similar personnel to run a proton PBS room to Linac.

Proton will replace x-rays as the main radiotherapy modality

1.Every site of the body will be treated efficiently with proton

2. The cost of purchasing proton system and operating it will be reduced significantly

PBS is the only modality which will allow to achieve the two objectives

Proton development team

- All faculty and staff of PENN Rad Onc.
- Primarily:
- Stefan Both PhD
- James McDonough PhD
- Maura Kirk Ms.
- Huifang Zhai Ms.
- Sabina Vennarini MD