OncoRay – National Center for Radiation Research in Oncology, Dresden

Particle effects: biological basis and models

Mechthild Krause

PTCOG, Essen 2013

Universitätsklinikum Carl Gustav Carus

CIKTZ. Deutsches Konsortium für Translationale Krebsforschung

Partnerstandort Dresden

Tranlational Radiation Oncology |Krause| PTCOG 2013

Biological basis of particle radiotherapy

- Biological efficacy increases with number of ionisations per distance
 ⇒ linear energy transfer (LET)
- Higher ionisation density for ions as for electrons/ photons
 ⇒ higher relative biological efficiency (RBE)
- Ionisation density increases with atomic number
 ⇒ higher RBE for heavy ions compared to protons
- Ionisation density increases with decreasing energy
 ⇒ higher RBE around the Braggpeaks compared to the entrance channel

Biological basis of particle radiotherapy

UncoRay ®

Direct and indirect action of radiation

depends on linear energy transfer (LET)

γ-rays

Indirect ionisation (mainly photons): Compton effect, radiolysis of water

Direct ionisation (mainly particles- e⁻, H⁺, C): atoms of the target are ionized or excited and lead to biological damage

Direct interaction with the nucleus (neutrons, protons, heavy ions)

Tranlational Radiation Oncology |Krause| PTCOG 2013

DNA damage after irradiation

Tranlational Radiation Oncology |Krause| PTCOG 2013

Linear energy transfer (LET) and radiobiological effectiveness (RBE)

Relative biological efficacy in vitro (LQ model)

OncoRay®

Relative biological effectiveness (protons)

Data content:

- In vitro: most data on chinese hamster cells
- In vivo: most data on normal tissues, tumour data on mouse fibrosarcoma and mouse mammary carcinoma (mostly growth delay)

Relative biological efficacy (C12) in vivo

Tranlational Radiation Oncology |Krause| PTCOG 2013

Karger et al., IJROBP 79, 239-46, 2011

UncoRav®

Relative biological effectiveness (RBE)

- No linear correlation of RBE and LET
- RBE depends on:

- Kind of ion
- Ion energy
- Ion dose
- Kind of tissue
- Biological endpoint

⇒ RBE different for each position in the irradiation field

Biological dose = physical dose * RBE

Cell cycle effects after irradiation

Tranlational Radiation Oncology |Krause| PTCOG 2013

Unrepaired clustered DNA lesions lead to chromosomal damage (increase with high LET)

00

hOGG1

G2 arrest occurs, most cells with unrepairable complex lesions die, but some are relaesed to M-phase \rightarrow chromosomal breaks

Tranlational Radiation Oncology |Krause| PTCOG 2013

Asaithamby et al., PNAS 108, 8293-98, 2011

number of chromosome aberrations is higher after exposure to radiosensitizers or high-LET irradiation

Hypoxia: Oxygen enhancement ratio (OER)

$$OER = \left. \frac{D_{\text{hypoxic}}}{D_{\text{oxic}}} \right|_{\text{isoeffect}}$$

- OER 2-3 for photons
- Less for higher LET particles
- Reason: OER is caused by the effect of radicals (i.e. higher for indirect ionizing irradiation)

Hypoxia: Oxygen enhancement ratio (OER)

Tranlational Radiation Oncology |Krause| PTCOG 2013

Barendsen (1968, 1972); Hall & Giaccia "Radiology for the Radiologist"

UncoRav®

Relative biological effectiveness (protons): Preclinical models *Clonogenic cell survival in vitro*

L.A. Kunz-Schughart

Linear-quadratic model

 Model assumes different DNA damages

<u>αD:</u>

- linear component
- 2 DSB, closed together, caused by one e⁻
- one-track event
- → Dicentric chromosom LETHAL

<u>βD²:</u>

- Quadratic component
- 2 DSB, closed together, caused by 2 e-
- Two-tracks-event
 → Subletalhal damage (NOT
- LETHAL)
- Cell survival curves steeper with higher LET i.e. higher α/β due to higher $\alpha/$ lower β component i.e. more lethal lesions/ lower likelihood of correct repair

Relative biological effectiveness (protons): Preclinical models Jejunal crypt assay

RBE = isoeffective ⁶⁰Co dose/ particle dose

Original:

- Intestinal or whole body irradiation, graded doses
- count of surviving colonies in crypts
- estimation of e.g. D_0 (dose to reduce survival to $e^{-1} = 37\%$
- (time point for evaluation can differ with kind of treatment, i.e. speed of recovery)

Relative biological effectiveness (protons): Preclinical models Jejunal crypt assay

Jejunal crypt assay, protons vs ⁶⁰Co

	Absorbed	dose (Gy)	
Surviving cells (n)	Cobalt	Proton	RBE*
100	12.89	11.55	1.12
50	13.84	12.54	1.10
20	15.09	13.86	1.09
10	16.03	14.86	1.08
5	16.98	15.86	1.07

RBE = isoeffective ⁶⁰Co dose/ particle dose

RBE = isoeffective ⁶⁰Co dose/ particle dose

- Acute mucositis after tongue irradiation (mice): evaluation of ulceration
- Acute cystitis after pelvic irradiation (mice): evaluation of bladder capacity
- Late fibrosis after leg irradiation: leg contraction assay (mice or rats)
- Lung fibrosis after hemi-thoracal irradiation (rats or pigs) imaging/ staining and breathing frequency
- Late myelitis after irradiation of a defined part of the spine

Important for all:

- Graded irradiation doses
- For fractionated irradiation: top-up assays (as RBE may change with dose per fraction)
- Endpoint: ED₅₀ (dose that leads to a defined effect, e.g. ulceration, in 50% of the animals)

Relative biological effectiveness (protons): Preclinical models In vivo tumour assays

Always use different radiation doses to test the dose effect (also when growth delay is evaluated)

Tranlational Radiation Oncology |Krause| PTCOG 2013 Urano et al., IJROBP 10, 09-14, 1984 Karger et al., IJROBP 79, 239-46, 2011

Beyond biological basis: molecular effects (examples)

ConcoRay

Paracrine Effects on Endothelial Cell Proliferation after Proton vs. Photon in co-culture assay Endothelial cell proliferation

Different molecular effects may cause differential responses to combination approaches

Tumor evasion from radiation–induced antiangiogenesis

Further research fields/ open questions

- Dependence of RBE on tissue, dose per fraction, particle type, proton/ particle energy – still very heterogeneic data
- Differences in molecular/ genetic responses
- Differences in response to combined treatment regimens
- Different response of CSC/ non-CSC or migration

$\textbf{Table 1} \mid \textbf{Radiobiological advantages of heavy ion therapy}$

1 0	_		
Effects	Bragg curve region		
	Plateau	Peak	Potential advantages
Irradiated tissue	Normal tissue	Tumor	NA
Energy	High	Low	NA
Linear energy transfer	Low	High	NA
Dose	Low	High	Highly conformal therapy
Relative biological effectiveness	~1	>1	Effective for radiotherapy- resistant tumors
Oxygen enhancement ratio	~3	<3	Effective against hypoxic tumor cells
Cell-cycle dependence	High	Low	Increased lethality in the target volume because cells in radiotherapy-resistant (S) phase are sensitized
Fractionation dependence	High	Low	Fractionation spares normal tissue more than the tumor
Effects on cell migration	Increased	Decreased	Potential reduction of tumor metastatic potential
Angiogenesis	Increased	Decreased	Potential reduction of angiogenesis in the tumor

Abbreviation: NA, not applicable.

Tranlational Radiation Oncology |Krause| PTCOG 2013