

Accelerators currently in use for particle therapy

Marco Schippers PAUL SCHERRER INSTITUT

Goal of this lecture: give you an idea on possibilities of current accelerators

- electric and magnetic fields
- synchrotron
- cyclotron

Vendors are acknowledged for sharing information and images !

More details in e.g.:H. Paganetti (ed.), Proton Therapy Physics, Chapter 3

J.M. Schippers, Rev. Acc. Science and Techn. 2 (2009) 179-200

J.M. Schippers IEEE Transact. Nucl. Sc. 63, 2 (2016) 939-948.

T. Haberer et al., Radiother. Oncol. 73 S186–90

Electric and Magnetic fields

→ focusing/deflection with E-fields mostly at low energy

(e.g. in injection line of synchrotron and in center of cyclotron)

Magnetic fields

"centripetal force" = Lorentz force :

 $mv^2/r = Bqv$

 $\Rightarrow track = circular orbit with radius r$ $\Rightarrow small r + high Energy: needs strong B$

Electromagnetic fields are used for:

E: acceleration

B: deflection and focusing

Present accelerator choice

	cyclotron	synchrotron
Protons	in use, \varnothing 2-5 m	in use, Ø8-10 m
Carbon ions	In development	in use, Ø25 m

Synchrotrons for protons

Energy increases:

At electrode slit crossing: Energy gain $\Delta E = V.q$

- \rightarrow speed \uparrow
- → RF frequency ↑ → field in magnets $\uparrow \frac{mv}{Bq} = r = \text{constant !}$

Magnets and RF frequency change **Synchronous** to particle **revolution frequency**

1 spill

several spills

Beam extraction from synchrotron

PTCOG

Compact synchrotron

ProTom 330 MeV

2012: Installation at: McLaren, Flint (Mi) MGH Boston (Ma)

- 220 MeV
- First facility in Hokkaido started 2013

=> a synchrotron provides:

- adjustable energy
- high Energy (ions !)
- any particle (if designed for)
- low radioactivity

Disadvantages:

- limited average intensity (ring filling)
- spill structure => limited average dose rate
- noisy beam intensity
- large footprint

Cyclotron (1930)

230 MeV (IBA, SHI,1996)

250 MeV (ACCEL/Varian,2005)

250 MeV proton cyclotron

Closed He system 4 cryocoolers 300 kW 90 tons **Proton source** ACCEL superconducting coils 1<u>.</u>4 m => 3 T 4 RF-cavities: ~80 kV at 72 MHz 3.4 m

medical

intensity control

Accelerators, Marco Schippers, PSI

Degrader and energy selection

Synchro-Cyclotron

First beam extracted in May 2010

IBA: S2C2

First beam at IBA in 2013

Remedy to **compensate** increase of T_{circle}

Synchrocyclotron (=CLASSICAL TRICK e.g. Harvard, Uppsala)

 $Decrease f_{RF}$ with radius and extract

$$f_{RF}$$
 = ~1/ T_{circle}

=> a cyclotron provides:

- continuous beam (but synchrocycl: pulsed)
- very fast and accurate intensity control
- great reliability (few components)
- small footprint
- + Energy change with fast degrader and fast magnets

Disadvantages: - activation of components near degrader - no carbon ions (yet)

New types of accelerators, e.g.:

FFAG, Linac based acc, Laser, Laser-Plasma

Great developments !

But do not only check price:

• treatment quality \geq now	?
--------------------------------	---

BASIS **of** Particle Th.

 organisation: medical device, service, upgrades ?

some differences...

	(syn-)cyclotron	<u>synchrotron</u>
Carbon ions	in development	easy
Change particle	in development	easy
Time structure	continuous(SC:pulsed)	spills
Fast E-scanning	degrader	next spill +developm.
Activation degrader	to be shielded	no
Intensity	"any"(SC:low),	limited, per spill
Intensity stability	3-5%	15-20% +developm
Size \varnothing	3.5 - 5 m (SC<2)	6-8 m (C: 25 m)
Scattering	ok	ok
Spot scanning	ok (SC: >2 pulses/spot)	ok
Fast continuous scanning	ok (SC: no)	difficult

